""" Polygon module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2020 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.monsalvete@concordia.ca """ import sys import numpy as np from helpers.geometry_helper import GeometryHelper as gh class Polygon: """ Polygon class """ def __init__(self, vertices): self._vertices = vertices self._area = None self._points = None self._normal = None @property def points(self) -> np.ndarray: if self._points is None: self._points = self._vertices return self._points @property def area(self): """ Surface area in square meters :return: float """ # New method to calculate area if self._area is None: if len(self.points) < 3: sys.stderr.write('Warning: the area of a line or point cannot be calculated 1. Area = 0\n') return 0 alpha = 0 vec_1 = self.points[1] - self.points[0] for i in range(2, len(self.points)): vec_2 = self.points[i] - self.points[0] alpha += gh.angle_between_vectors(vec_1, vec_2) if alpha == 0: sys.stderr.write('Warning: the area of a line or point cannot be calculated 2. Area = 0\n') return 0 horizontal_points = self.rotate_surface_to_horizontal area = 0 for i in range(0, len(horizontal_points)-1): point = horizontal_points[i] next_point = horizontal_points[i+1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) next_point = horizontal_points[0] point = horizontal_points[len(horizontal_points)-1] area += (next_point[1] + point[1]) / 2 * (next_point[0] - point[0]) self._area = abs(area) return self._area @property def rotate_surface_to_horizontal(self): z_vector = [0, 0, 1] normal_vector = self.normal horizontal_points = [] x = normal_vector[0] y = normal_vector[1] if x == 0 and y == 0: # Already horizontal for point in self.points: horizontal_points.append([point[0], point[1], 0]) else: alpha = gh.angle_between_vectors(normal_vector, z_vector) rotation_line = np.cross(normal_vector, z_vector) third_axis = np.cross(normal_vector, rotation_line) w_1 = rotation_line / np.linalg.norm(rotation_line) w_2 = normal_vector w_3 = third_axis / np.linalg.norm(third_axis) rotation_matrix = np.array([[1, 0, 0], [0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha), np.cos(alpha)]]) base_matrix = np.array([w_1, w_2, w_3]) rotation_base_matrix = np.matmul(base_matrix.transpose(), rotation_matrix.transpose()) rotation_base_matrix = np.matmul(rotation_base_matrix, base_matrix) if rotation_base_matrix is None: sys.stderr.write('Warning: rotation base matrix returned None\n') else: for point in self.points: new_point = np.matmul(rotation_base_matrix, point) horizontal_points.append(new_point) return horizontal_points @property def normal(self) -> np.ndarray: """ Surface normal vector :return: np.ndarray """ if self._normal is None: points = self.points # todo: IF THE FIRST ONE IS 0, START WITH THE NEXT point_origin = points[len(points)-2] vector_1 = points[len(points)-1] - point_origin vector_2 = points[0] - point_origin vector_3 = points[1] - point_origin cross_product = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product) != 0: cross_product = cross_product / np.linalg.norm(cross_product) alpha = gh.angle_between_vectors(vector_1, vector_2) else: # todo modify here cross_product = [0, 0, 0] alpha = 0 if len(points) == 3: return cross_product alpha += self._angle(vector_2, vector_3, cross_product) for i in range(0, len(points)-4): vector_1 = points[i+1] - point_origin vector_2 = points[i+2] - point_origin alpha += self._angle(vector_1, vector_2, cross_product) vector_1 = points[len(points) - 1] - point_origin vector_2 = points[0] - point_origin if alpha < 0: cross_product = np.cross(vector_2, vector_1) else: cross_product = np.cross(vector_1, vector_2) self._normal = cross_product / np.linalg.norm(cross_product) return self._normal @staticmethod def _angle(vector_1, vector_2, cross_product): accepted_normal_difference = 0.01 cross_product_next = np.cross(vector_1, vector_2) if np.linalg.norm(cross_product_next) != 0: cross_product_next = cross_product_next / np.linalg.norm(cross_product_next) alpha = gh.angle_between_vectors(vector_1, vector_2) else: cross_product_next = [0, 0, 0] alpha = 0 delta_normals = 0 for j in range(0, 3): delta_normals += cross_product[j] - cross_product_next[j] if np.abs(delta_normals) < accepted_normal_difference: return alpha else: return -alpha