system_assignation/DistrictHeatingNetworkCreator.py
2024-03-28 10:30:54 -04:00

188 lines
8.4 KiB
Python

import json
import geopandas as gpd
import matplotlib.pyplot as plt
from shapely.geometry import Polygon, Point, LineString, MultiPoint
import networkx as nx
from scipy.spatial import cKDTree
import hub.helpers.constants as cte
class DistrictHeatingNetworkCreator:
def __init__(self, buildings_file, roads_file, central_plant_longitude, central_plant_latitude):
self.buildings_file = buildings_file
self.roads_file = roads_file
self.central_plant_longitude = central_plant_longitude
self.central_plant_latitude = central_plant_latitude
def run(self):
self._load_and_process_data()
self._find_nearest_roads()
self._process_intersections()
network_graph = self._create_network_graph()
return network_graph
def _load_and_process_data(self):
self.gdf_road = gpd.read_file(self.roads_file)
with open(self.buildings_file, 'r') as file:
city = json.load(file)
centroids = []
building_ids = []
for building in city['features']:
coordinates = building['geometry']['coordinates'][0]
building_polygon = Polygon(coordinates)
centroid = building_polygon.centroid
centroids.append(centroid)
building_ids.append(building['id'])
centroids.append(Point(self.central_plant_longitude, self.central_plant_latitude))
building_ids.append(1)
self.centroids_gdf = gpd.GeoDataFrame({
'geometry': [Point(centroid.x, centroid.y) for centroid in centroids],
'building_id': building_ids,
'type': ['centroid' for _ in centroids]
}, crs='EPSG:4326')
def _find_nearest_roads(self):
self.centroids_gdf = self.centroids_gdf.to_crs(self.gdf_road.crs)
self.gdf_clean = gpd.GeoDataFrame(
{'geometry': [LineString([coord for coord in line.coords]) for line in self.gdf_road.geometry]})
self.closest_linestrings = []
self.nearest_points = []
for centroid in self.centroids_gdf.geometry:
closest_road = min(self.gdf_clean.geometry, key=lambda x: x.distance(centroid))
self.closest_linestrings.append(closest_road)
nearest_point = closest_road.interpolate(closest_road.project(centroid))
self.nearest_points.append(nearest_point)
def _process_intersections(self):
self.gdf_pts = gpd.GeoDataFrame(
{'geometry': [Point(coord) for line in self.gdf_clean.geometry for coord in line.coords]})
self.gdf_pts2 = gpd.GeoDataFrame({'geometry': self.nearest_points})
self.gdf_pts3 = gpd.GeoDataFrame({'geometry': self.nearest_points + list(self.gdf_pts.geometry)})
intersects = []
for geom in self.gdf_clean.geometry:
intersecting_points = []
if geom is not None:
for y in range(len(self.gdf_pts2)):
point_geom = self.gdf_pts2.geometry[y]
if point_geom is not None and point_geom.distance(geom) <= 1.0:
intersecting_points.append(y)
intersects.append(intersecting_points)
self.gdf_clean["intersect"] = intersects
self.gdf_cleaner = self.gdf_clean[self.gdf_clean["intersect"].apply(len).gt(0)].reset_index(drop=True)
self.test_list = []
for idx, row in self.gdf_cleaner.iterrows():
for i in range(len(row["intersect"]) + 1):
if i == 0:
self.test_list.append(
LineString([row['geometry'].coords[0], self.gdf_pts3.geometry[row['intersect'][i]]]))
elif i < len(row['intersect']):
self.test_list.append(LineString(
[self.gdf_pts3.geometry[row['intersect'][i - 1]], self.gdf_pts3.geometry[row['intersect'][i]]]))
else:
self.test_list.append(
LineString([self.gdf_pts3.geometry[row['intersect'][i - 1]], row['geometry'].coords[-1]]))
self.gdf_cleanest = gpd.GeoDataFrame({'geometry': self.test_list})
points = [coord for geom in self.gdf_cleanest.geometry for coord in geom.coords]
gdf_pts_cnt = self.gdf_pts.copy()
gdf_pts_cnt["count"] = gdf_pts_cnt.geometry.apply(lambda x: points.count(x.coords[0]))
gdf_pts_reset = gdf_pts_cnt[gdf_pts_cnt["count"] > 1].reset_index(drop=True)
gdf_pts_drop = gdf_pts_cnt[gdf_pts_cnt["count"] <= 1].reset_index(drop=True)
for idx, geom in self.gdf_cleanest.iterrows():
for coord in geom.geometry.coords:
if coord in [pt.coords[0] for pt in gdf_pts_drop.geometry]:
self.gdf_cleanest = self.gdf_cleanest.drop(idx)
self.gdf_cleanest.reset_index(drop=True, inplace=True)
def _create_network_graph(self):
g = nx.Graph()
# Add nodes with geometry attribute
for idx, row in self.centroids_gdf.iterrows():
building_name = f"Building_{idx}"
g.add_node((row.geometry.x, row.geometry.y),
geometry=row.geometry, # Include geometry attribute
type='centroid',
name=building_name,
building_id=str(row.get('building_id')))
for point in self.nearest_points:
g.add_node((point.x, point.y),
geometry=point, # Include geometry attribute
type='nearest_point')
for line in self.gdf_cleanest.geometry:
length = line.length
if isinstance(line.boundary, MultiPoint):
points = list(line.boundary.geoms)
for i in range(len(points) - 1):
start_point = points[i]
end_point = points[i + 1]
g.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
else:
start_point, end_point = line.boundary
g.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
for point, centroid in zip(self.nearest_points, self.centroids_gdf.geometry):
distance = point.distance(centroid)
g.add_edge((point.x, point.y), (centroid.x, centroid.y), weight=distance)
# Check and connect isolated components
components = list(nx.connected_components(g))
if len(components) > 1:
components.sort(key=len)
main_component = components[-1]
for comp in components[:-1]:
self._connect_component_to_main(g, comp, main_component)
return g
def _connect_component_to_main(self, graph, component, main_component):
main_component_nodes = [graph.nodes[node] for node in main_component if 'geometry' in graph.nodes[node]]
# Create cKDTree for efficient nearest neighbor search
tree = cKDTree([(node['geometry'].x, node['geometry'].y) for node in main_component_nodes])
# For each node in the component, find the closest street node in the main component
for node in component:
if 'geometry' in graph.nodes[node]: # Check for geometry attribute
node_geometry = graph.nodes[node]['geometry']
distance, idx = tree.query((node_geometry.x, node_geometry.y))
closest_node_geometry = main_component_nodes[idx]['geometry']
# Add edge to the graph
graph.add_edge((node_geometry.x, node_geometry.y),
(closest_node_geometry.x, closest_node_geometry.y), weight=distance)
def plot_network_graph(network_graph, central_plant_id=1):
plt.figure(figsize=(12, 12))
pos = {node: (node[0], node[1]) for node in network_graph.nodes()}
# Node colors based on type
node_colors = ['red' if data.get('building_id') == str(central_plant_id) else 'green' if data.get(
'type') == 'centroid' else 'blue' for node, data in network_graph.nodes(data=True)]
# Node sizes, larger for central plant
node_sizes = [100 if data.get('building_id') == str(central_plant_id) else 50 for node, data in
network_graph.nodes(data=True)]
nx.draw_networkx_nodes(network_graph, pos, node_color=node_colors, node_size=node_sizes)
nx.draw_networkx_edges(network_graph, pos, edge_color='gray', width=1)
plt.title('District Heating Network Graph')
plt.axis('off')
plt.savefig('network_graph_visualization.png', format='png', dpi=300) # Save as PNG with high dpi for clarity
plt.show()