system_assignation/city_model_structure/city_object.py

207 lines
6.0 KiB
Python

from matplotlib import pylab
from city_model_structure.polyhedron import Polyhedron
from city_model_structure.thermal_zone import ThermalZone
from city_model_structure.thermal_boundary import ThermalBoundary
from city_model_structure.surface import Surface
from shapely import ops
from shapely.geometry import MultiPolygon
import numpy as np
from pathlib import Path
import matplotlib.patches as patches
from helpers.geometry import Geometry
from city_model_structure.usage_zone import UsageZone
from typing import Union, List
class CityObject:
def __init__(self, name, lod, surfaces, terrains, year_of_construction, function, lower_corner, attic_heated=0,
basement_heated=0):
self._name = name
self._lod = lod
self._surfaces = surfaces
self._polyhedron = None
self._basement_heated = basement_heated
self._attic_heated = attic_heated
self._terrains = terrains
self._year_of_construction = year_of_construction
self._function = function
self._lower_corner = lower_corner
self._geometry = Geometry()
self._average_storey_height = None
self._storeys_above_ground = None
self._foot_print = None
self._usage_zones = []
# ToDo: this need to be changed when we have other city_objects beside "buildings"
self._type = 'building'
# ToDo: Check this for LOD4
self._thermal_zones = []
if self.lod < 8:
# for lod under 4 is just one thermal zone
self._thermal_zones.append(ThermalZone(self.surfaces))
for t in self._thermal_zones:
t.bounded = [ThermalBoundary(s, [t]) for s in t.surfaces]
surface_id = 0
for s in self._surfaces:
s.lower_corner = self._lower_corner
s.parent(self, surface_id)
surface_id += 1
@property
def usage_zones(self) -> List[UsageZone]:
return self._usage_zones
@usage_zones.setter
def usage_zones(self, values):
# ToDo: this is only valid for one usage zone need to be revised for multiple usage zones.
self._usage_zones = values
for thermal_zone in self.thermal_zones:
thermal_zone.usage_zones = [(100, usage_zone) for usage_zone in values]
@property
def terrains(self) -> List[Surface]:
return self._terrains
@property
def attic_heated(self):
return self._attic_heated
@attic_heated.setter
def attic_heated(self, value):
self._attic_heated = value
@property
def basement_heated(self):
return self._basement_heated
@basement_heated.setter
def basement_heated(self, value):
self._attic_heated = value
@property
def name(self):
return self._name
@property
def lod(self):
return self._lod
@property
def surfaces(self) -> List[Surface]:
return self._surfaces
def surface(self, name) -> Union[Surface, None]:
for s in self.surfaces:
if s.name == name:
return s
return None
@property
def thermal_zones(self) -> List[ThermalZone]:
return self._thermal_zones
@property
def volume(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
return self._polyhedron.volume
@property
def heated_volume(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
# ToDo: this need to be the calculated based on the basement and attic heated values
return self._polyhedron.volume
def stl_export(self, path):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
full_path = (Path(path) / (self._name + '.stl')).resolve()
self._polyhedron.save(full_path)
@property
def year_of_construction(self):
return self._year_of_construction
@property
def function(self):
return self._function
@property
def average_storey_height(self):
return self._average_storey_height
@average_storey_height.setter
def average_storey_height(self, value):
self._average_storey_height = value
@property
def storeys_above_ground(self):
return self._storeys_above_ground
@storeys_above_ground.setter
def storeys_above_ground(self, value):
self._storeys_above_ground = value
@staticmethod
def _tuple_to_point(xy_tuple):
return [xy_tuple[0], xy_tuple[1], 0.0]
def _plot(self, polygon):
points = ()
for point_tuple in polygon.exterior.coords:
almost_equal = False
for point in points:
p1 = CityObject._tuple_to_point(point)
p2 = CityObject._tuple_to_point(point_tuple)
if self._geometry.almost_equal(p1, p2):
almost_equal = True
break
if not almost_equal:
points = points + (point_tuple,)
points = points + (points[0],)
pylab.scatter([point[0] for point in points], [point[1] for point in points])
pylab.gca().add_patch(patches.Polygon(points, closed=True, fill=True))
pylab.grid()
pylab.show()
@property
def foot_print(self) -> Surface:
if self._foot_print is None:
shapelys = []
union = None
for surface in self.surfaces:
if surface.shapely.is_empty or not surface.shapely.is_valid:
continue
shapelys.append(surface.shapely)
union = ops.unary_union(shapelys)
shapelys = [union]
if type(union) == MultiPolygon:
Exception('foot print returns a multipolygon')
points_list = []
for point_tuple in union.exterior.coords:
# ToDo: should be Z 0.0 or min Z?
point = CityObject._tuple_to_point(point_tuple)
almost_equal = False
for existing_point in points_list:
if self._geometry.almost_equal(point, existing_point):
almost_equal = True
break
if not almost_equal:
points_list.append(point)
points_list = np.reshape(points_list, len(points_list) * 3)
points = np.array_str(points_list).replace('[', '').replace(']', '')
self._foot_print = Surface(points, remove_last=False, is_projected=True)
return self._foot_print
@property
def type(self):
return self._type
@property
def max_height(self):
if self._polyhedron is None:
self._polyhedron = Polyhedron(self.surfaces)
return self._polyhedron.max_z