116 lines
5.1 KiB
Python
116 lines
5.1 KiB
Python
"""
|
|
TestExports test and validate the city export formats
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
Copyright © 2022 Concordia CERC group
|
|
Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
|
|
"""
|
|
import subprocess
|
|
from pathlib import Path
|
|
from unittest import TestCase
|
|
|
|
import pandas as pd
|
|
|
|
import hub.helpers.constants as cte
|
|
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
|
|
from hub.exports.exports_factory import ExportsFactory
|
|
from hub.helpers.dictionaries import Dictionaries
|
|
from hub.imports.construction_factory import ConstructionFactory
|
|
from hub.imports.geometry_factory import GeometryFactory
|
|
from hub.imports.results_factory import ResultFactory
|
|
from hub.imports.usage_factory import UsageFactory
|
|
|
|
|
|
class TestResultsImport(TestCase):
|
|
"""
|
|
TestImports class contains the unittest for import functionality
|
|
"""
|
|
def setUp(self) -> None:
|
|
"""
|
|
Test setup
|
|
:return: None
|
|
"""
|
|
self._example_path = (Path(__file__).parent / 'tests_data').resolve()
|
|
self._gml_path = (self._example_path / 'FZK_Haus_LoD_2.gml').resolve()
|
|
self._output_path = (Path(__file__).parent / 'tests_outputs').resolve()
|
|
self._city = GeometryFactory('citygml',
|
|
self._gml_path,
|
|
function_to_hub=Dictionaries().alkis_function_to_hub_function).city
|
|
ConstructionFactory('nrcan', self._city).enrich()
|
|
UsageFactory('nrcan', self._city).enrich()
|
|
|
|
def test_sra_import(self):
|
|
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
|
|
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
|
|
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
|
|
subprocess.run(['sra', str(sra_path)])
|
|
ResultFactory('sra', self._city, self._output_path).enrich()
|
|
# Check that all the buildings have radiance in the surfaces
|
|
for building in self._city.buildings:
|
|
for surface in building.surfaces:
|
|
self.assertIsNotNone(surface.global_irradiance)
|
|
|
|
def test_meb_import(self):
|
|
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
|
|
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
|
|
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
|
|
subprocess.run(['sra', str(sra_path)])
|
|
ResultFactory('sra', self._city, self._output_path).enrich()
|
|
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', self._city, self._output_path).export()
|
|
for building in self._city.buildings:
|
|
insel_path = (self._output_path / f'{building.name}.insel')
|
|
subprocess.run(['insel', str(insel_path)])
|
|
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
|
|
# Check that all the buildings have heating and cooling values
|
|
for building in self._city.buildings:
|
|
self.assertIsNotNone(building.heating[cte.MONTH][cte.INSEL_MEB])
|
|
self.assertIsNotNone(building.cooling[cte.MONTH][cte.INSEL_MEB])
|
|
self.assertIsNotNone(building.heating[cte.YEAR][cte.INSEL_MEB])
|
|
self.assertIsNotNone(building.cooling[cte.YEAR][cte.INSEL_MEB])
|
|
|
|
def test_peak_loads(self):
|
|
# todo: this is not technically a import
|
|
weather_file = (self._example_path / 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
|
|
ExportsFactory('sra', self._city, self._output_path, weather_file=weather_file, weather_format='epw').export()
|
|
sra_path = (self._output_path / f'{self._city.name}_sra.xml').resolve()
|
|
subprocess.run(['sra', str(sra_path)])
|
|
ResultFactory('sra', self._city, self._output_path).enrich()
|
|
for building in self._city.buildings:
|
|
self.assertIsNotNone(building.heating_peak_load)
|
|
self.assertIsNotNone(building.cooling_peak_load)
|
|
|
|
values = [0 for _ in range(8760)]
|
|
values[0] = 1000
|
|
expected_yearly = pd.DataFrame([1000], columns=['expected'])
|
|
expected_monthly_list = [0 for _ in range(12)]
|
|
expected_monthly_list[0] = 1000
|
|
expected_monthly = pd.DataFrame(expected_monthly_list, columns=['expected'])
|
|
for building in self._city.buildings:
|
|
building.heating[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
|
|
building.cooling[cte.HOUR] = pd.DataFrame(values, columns=['dummy'])
|
|
self.assertIsNotNone(building.heating_peak_load)
|
|
self.assertIsNotNone(building.cooling_peak_load)
|
|
pd.testing.assert_series_equal(
|
|
building.heating_peak_load[cte.YEAR]['heating peak loads'],
|
|
expected_yearly['expected'],
|
|
check_names=False
|
|
)
|
|
pd.testing.assert_series_equal(
|
|
building.cooling_peak_load[cte.YEAR]['cooling peak loads'],
|
|
expected_yearly['expected'],
|
|
check_names=False
|
|
)
|
|
pd.testing.assert_series_equal(
|
|
building.heating_peak_load[cte.MONTH]['heating peak loads'],
|
|
expected_monthly['expected'],
|
|
check_names=False
|
|
)
|
|
pd.testing.assert_series_equal(
|
|
building.cooling_peak_load[cte.MONTH]['cooling peak loads'],
|
|
expected_monthly['expected'],
|
|
check_names=False
|
|
)
|
|
|
|
|
|
|
|
|