system_assignation/hub/exports/building_energy/idf.py

713 lines
33 KiB
Python

"""
Idf exports one building to idf format
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Guille Guillermo.GutierrezMorote@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Soroush Samareh Abolhassani soroush.samarehabolhassani@mail.concordia.ca
"""
import copy
from pathlib import Path
from geomeppy import IDF
import hub.helpers.constants as cte
from hub.city_model_structure.attributes.schedule import Schedule
from hub.city_model_structure.building_demand.thermal_zone import ThermalZone
class Idf:
"""
Exports city to IDF
"""
_BUILDING = 'BUILDING'
_ZONE = 'ZONE'
_LIGHTS = 'LIGHTS'
_APPLIANCES = 'OTHEREQUIPMENT'
_PEOPLE = 'PEOPLE'
_DHW = 'WATERUSE:EQUIPMENT'
_THERMOSTAT = 'HVACTEMPLATE:THERMOSTAT'
_IDEAL_LOAD_AIR_SYSTEM = 'HVACTEMPLATE:ZONE:IDEALLOADSAIRSYSTEM'
_SURFACE = 'BUILDINGSURFACE:DETAILED'
_SHADING = 'SHADING:BUILDING:DETAILED'
_SHADING_PROPERTY = 'SHADINGPROPERTY:REFLECTANCE'
_BUILDING_SURFACE = 'BuildingSurfaceDetailed'
_CONSTRUCTION = 'CONSTRUCTION'
_MATERIAL = 'MATERIAL'
_MATERIAL_NOMASS = 'MATERIAL:NOMASS'
_MATERIAL_ROOFVEGETATION = 'MATERIAL:ROOFVEGETATION'
_WINDOW = 'FENESTRATIONSURFACE:DETAILED'
_WINDOW_MATERIAL_SIMPLE = 'WINDOWMATERIAL:SIMPLEGLAZINGSYSTEM'
_ROUGHNESS = 'MediumRough'
_INFILTRATION = 'ZONEINFILTRATION:DESIGNFLOWRATE'
_HOURLY_SCHEDULE = 'SCHEDULE:DAY:HOURLY'
_COMPACT_SCHEDULE = 'SCHEDULE:COMPACT'
_FILE_SCHEDULE = 'SCHEDULE:FILE'
_SCHEDULE_LIMIT = 'SCHEDULETYPELIMITS'
_ON_OFF = 'On/Off'
_FRACTION = 'Fraction'
_ANY_NUMBER = 'Any Number'
_CONTINUOUS = 'Continuous'
_DISCRETE = 'Discrete'
_SIZING_PERIODS = 'SIZINGPERIOD:DESIGNDAY'
_LOCATION = 'SITE:LOCATION'
_SIMPLE = 'Simple'
idf_surfaces = {
# todo: make an enum for all the surface types
cte.WALL: 'wall',
cte.GROUND: 'floor',
cte.ROOF: 'roof'
}
idf_type_limits = {
cte.ON_OFF: 'on/off',
cte.FRACTION: 'Fraction',
cte.ANY_NUMBER: 'Any Number',
cte.CONTINUOUS: 'Continuous',
cte.DISCRETE: 'Discrete'
}
idf_day_types = {
cte.MONDAY: 'Monday',
cte.TUESDAY: 'Tuesday',
cte.WEDNESDAY: 'Wednesday',
cte.THURSDAY: 'Thursday',
cte.FRIDAY: 'Friday',
cte.SATURDAY: 'Saturday',
cte.SUNDAY: 'Sunday',
cte.HOLIDAY: 'Holidays',
cte.WINTER_DESIGN_DAY: 'WinterDesignDay',
cte.SUMMER_DESIGN_DAY: 'SummerDesignDay'
}
def __init__(self, city, output_path, idf_file_path, idd_file_path, epw_file_path, export_type="Surfaces",
target_buildings=None, adjacent_buildings=None):
self._city = city
self._output_path = str(output_path.resolve())
self._output_file = str((output_path / f'{city.name}.idf').resolve())
self._export_type = export_type
self._idd_file_path = str(idd_file_path)
self._idf_file_path = str(idf_file_path)
self._epw_file_path = str(epw_file_path)
IDF.setiddname(self._idd_file_path)
self._idf = IDF(self._idf_file_path, self._epw_file_path)
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._ANY_NUMBER)
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._FRACTION, Lower_Limit_Value=0.0, Upper_Limit_Value=1.0,
Numeric_Type=self._CONTINUOUS)
self._idf.newidfobject(self._SCHEDULE_LIMIT, Name=self._ON_OFF, Lower_Limit_Value=0, Upper_Limit_Value=1,
Numeric_Type=self._DISCRETE)
self._target_buildings = target_buildings
if target_buildings is None:
self._target_buildings = [building.name for building in self._city.buildings]
self._adjacent_buildings = adjacent_buildings
if self._adjacent_buildings is None:
self._adjacent_buildings = []
self._export()
@staticmethod
def _matrix_to_list(points, lower_corner):
lower_x = lower_corner[0]
lower_y = lower_corner[1]
lower_z = lower_corner[2]
points_list = []
for point in points:
point_tuple = (point[0] - lower_x, point[1] - lower_y, point[2] - lower_z)
points_list.append(point_tuple)
return points_list
@staticmethod
def _matrix_to_2d_list(points):
points_list = []
for point in points:
point_tuple = (point[0], point[1])
points_list.append(point_tuple)
return points_list
def _add_material(self, layer):
for material in self._idf.idfobjects[self._MATERIAL]:
if material.Name == layer.material.name:
return
for material in self._idf.idfobjects[self._MATERIAL_NOMASS]:
if material.Name == layer.material.name:
return
if layer.material.no_mass:
self._idf.newidfobject(self._MATERIAL_NOMASS,
Name=layer.material.name,
Roughness=self._ROUGHNESS,
Thermal_Resistance=layer.material.thermal_resistance
)
else:
self._idf.newidfobject(self._MATERIAL,
Name=layer.material.name,
Roughness=self._ROUGHNESS,
Thickness=layer.thickness,
Conductivity=layer.material.conductivity,
Density=layer.material.density,
Specific_Heat=layer.material.specific_heat,
Thermal_Absorptance=layer.material.thermal_absorptance,
Solar_Absorptance=layer.material.solar_absorptance,
Visible_Absorptance=layer.material.visible_absorptance
)
def _add_standard_compact_hourly_schedule(self, usage, schedule_type, schedules):
for schedule in self._idf.idfobjects[self._COMPACT_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}':
return
_kwargs = {'Name': f'{schedule_type} schedules {usage}',
'Schedule_Type_Limits_Name': self.idf_type_limits[schedules[0].data_type],
'Field_1': 'Through: 12/31'}
counter = 1
for j, schedule in enumerate(schedules):
_val = schedule.values
_new_field = ''
for day_type in schedule.day_types:
_new_field += f' {self.idf_day_types[day_type]}'
_kwargs[f'Field_{j * 25 + 2}'] = f'For:{_new_field}'
counter += 1
for i in range(0, len(_val)):
_kwargs[f'Field_{j * 25 + 3 + i}'] = f'Until: {i + 1:02d}:00,{_val[i]}'
counter += 1
_kwargs[f'Field_{counter + 1}'] = f'For AllOtherDays'
_kwargs[f'Field_{counter + 2}'] = f'Until: 24:00,0.0'
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
def _write_schedules_file(self, usage, schedule):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage}.dat').resolve())
with open(file_name, 'w') as file:
for value in schedule.values:
file.write(f'{str(value)},\n')
return file_name
def _add_file_schedule(self, usage, schedule, file_name):
_schedule = self._idf.newidfobject(self._FILE_SCHEDULE, Name=f'{schedule.type} schedules {usage}')
_schedule.Schedule_Type_Limits_Name = self.idf_type_limits[schedule.data_type]
_schedule.File_Name = file_name
_schedule.Column_Number = 1
_schedule.Rows_to_Skip_at_Top = 0
_schedule.Number_of_Hours_of_Data = 8760
_schedule.Column_Separator = 'Comma'
_schedule.Interpolate_to_Timestep = 'No'
_schedule.Minutes_per_Item = 60
def _add_infiltration_schedules(self, thermal_zone):
#todo: clean the way infiltration is hardcoded
_infiltration_schedules = []
if thermal_zone.thermal_control is None:
return
for hvac_availability_schedule in thermal_zone.thermal_control.hvac_availability_schedules:
_schedule = Schedule()
_schedule.type = cte.INFILTRATION
_schedule.data_type = cte.FRACTION
_schedule.time_step = cte.HOUR
_schedule.time_range = cte.DAY
_schedule.day_types = copy.deepcopy(hvac_availability_schedule.day_types)
_infiltration_values = []
for hvac_value in hvac_availability_schedule.values:
if hvac_value == 0:
_infiltration_values.append(1)
else:
_infiltration_values.append(1)
_schedule.values = _infiltration_values
_infiltration_schedules.append(_schedule)
for schedule in self._idf.idfobjects[self._HOURLY_SCHEDULE]:
if schedule.Name == f'Infiltration schedules {thermal_zone.usage_name}':
return
return self._add_standard_compact_hourly_schedule(thermal_zone.usage_name, 'Infiltration', _infiltration_schedules)
def _add_people_activity_level_schedules(self, thermal_zone):
_occ = thermal_zone.occupancy
if _occ.occupancy_density == 0:
_total_heat = 0
else:
_total_heat = (_occ.sensible_convective_internal_gain + _occ.sensible_radiative_internal_gain
+ _occ.latent_internal_gain) / _occ.occupancy_density
for schedule in self._idf.idfobjects[self._COMPACT_SCHEDULE]:
if schedule.Name == f'Activity Level schedules {thermal_zone.usage_name}':
return
_kwargs = {'Name': f'Activity Level schedules {thermal_zone.usage_name}',
'Schedule_Type_Limits_Name': self.idf_type_limits[cte.ANY_NUMBER],
'Field_1': 'Through: 12/31',
'Field_2': 'For AllDays',
'Field_3': f'Until: 24:00,{_total_heat}'}
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
return
def _add_schedules(self, usage, schedule_type, new_schedules):
schedule_from_file = False
for schedule in new_schedules:
if len(schedule.values) > 168: # Hours in one week
schedule_from_file = True
if schedule_from_file:
for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}':
return
file_name = self._write_schedules_file(usage, new_schedules[0])
return self._add_file_schedule(usage, new_schedules[0], file_name)
else:
for schedule in self._idf.idfobjects[self._HOURLY_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}':
return
return self._add_standard_compact_hourly_schedule(usage, schedule_type, new_schedules)
def _add_constant_hourly_year_schedules(self, thermal_zone, value, schedule_type):
_schedule = Schedule()
_schedule.type = schedule_type
_schedule.data_type = cte.ANY_NUMBER
_schedule.time_step = cte.HOUR
_schedule.time_range = cte.DAY
_schedule.day_types = ['monday',
'tuesday',
'wednesday',
'thursday',
'friday',
'saturday',
'sunday',
'holiday',
'winter_design_day',
'summer_design_day']
_schedule.values = [value for _ in range(0, 24)]
return self._add_standard_compact_hourly_schedule(thermal_zone.usage_name, schedule_type, [_schedule])
def _add_construction(self, thermal_boundary):
for construction in self._idf.idfobjects[self._CONSTRUCTION]:
if thermal_boundary.parent_surface.vegetation is not None:
if construction.Name == f'{thermal_boundary.construction_name}_{thermal_boundary.parent_surface.vegetation.name}':
return
else:
if construction.Name == thermal_boundary.construction_name:
return
if thermal_boundary.layers is None:
for material in self._idf.idfobjects[self._MATERIAL]:
if material.Name == "DefaultMaterial":
return
self._idf.set_default_constructions()
return
for layer in thermal_boundary.layers:
self._add_material(layer)
layers = thermal_boundary.layers
# The constructions should have at least one layer
if thermal_boundary.parent_surface.vegetation is not None:
_kwargs = {'Name': f'{thermal_boundary.construction_name}_{thermal_boundary.parent_surface.vegetation.name}',
'Outside_Layer': thermal_boundary.parent_surface.vegetation.name}
for i in range(0, len(layers) - 1):
_kwargs[f'Layer_{i + 2}'] = layers[i].material.name
else:
_kwargs = {'Name': thermal_boundary.construction_name, 'Outside_Layer': layers[0].material.name}
for i in range(1, len(layers) - 1):
_kwargs[f'Layer_{i + 1}'] = layers[i].material.name
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
def _add_window_construction_and_material(self, thermal_opening):
for window_material in self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]:
if window_material['UFactor'] == thermal_opening.overall_u_value and \
window_material['Solar_Heat_Gain_Coefficient'] == thermal_opening.g_value:
return
order = str(len(self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]) + 1)
material_name = 'glazing_' + order
_kwargs = {'Name': material_name, 'UFactor': thermal_opening.overall_u_value,
'Solar_Heat_Gain_Coefficient': thermal_opening.g_value}
self._idf.newidfobject(self._WINDOW_MATERIAL_SIMPLE, **_kwargs)
window_construction_name = 'window_construction_' + order
_kwargs = {'Name': window_construction_name, 'Outside_Layer': material_name}
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
def _add_zone(self, thermal_zone, name):
for zone in self._idf.idfobjects['ZONE']:
if zone.Name == name:
return
# todo: what do we need to define a zone in energy plus?
self._idf.newidfobject(self._ZONE, Name=name, Volume=thermal_zone.volume)
self._add_heating_system(thermal_zone, name)
def _add_thermostat(self, thermal_zone):
thermostat_name = f'Thermostat {thermal_zone.usage_name}'
for thermostat in self._idf.idfobjects[self._THERMOSTAT]:
if thermostat.Name == thermostat_name:
return thermostat
# todo: change schedules to schedule name and create schedules using the add_schedule function
return self._idf.newidfobject(self._THERMOSTAT,
Name=thermostat_name,
Heating_Setpoint_Schedule_Name=f'Heating thermostat schedules {thermal_zone.usage_name}',
Cooling_Setpoint_Schedule_Name=f'Cooling thermostat schedules {thermal_zone.usage_name}')
def _add_heating_system(self, thermal_zone, zone_name):
for air_system in self._idf.idfobjects[self._IDEAL_LOAD_AIR_SYSTEM]:
if air_system.Zone_Name == zone_name:
return
thermostat = self._add_thermostat(thermal_zone)
self._idf.newidfobject(self._IDEAL_LOAD_AIR_SYSTEM,
Zone_Name=zone_name,
System_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
Heating_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
Cooling_Availability_Schedule_Name=f'HVAC AVAIL SCHEDULES {thermal_zone.usage_name}',
Template_Thermostat_Name=thermostat.Name)
def _add_occupancy(self, thermal_zone, zone_name):
number_of_people = thermal_zone.occupancy.occupancy_density * thermal_zone.total_floor_area
fraction_radiant = 0
total_sensible = thermal_zone.occupancy.sensible_radiative_internal_gain + \
thermal_zone.occupancy.sensible_convective_internal_gain
if total_sensible != 0:
fraction_radiant = thermal_zone.occupancy.sensible_radiative_internal_gain / total_sensible
self._idf.newidfobject(self._PEOPLE,
Name=f'{zone_name}_occupancy',
Zone_or_ZoneList_Name=zone_name,
Number_of_People_Schedule_Name=f'Occupancy schedules {thermal_zone.usage_name}',
Number_of_People_Calculation_Method="People",
Number_of_People=number_of_people,
Fraction_Radiant=fraction_radiant,
Activity_Level_Schedule_Name=f'Activity Level schedules {thermal_zone.usage_name}'
)
def _add_lighting(self, thermal_zone: ThermalZone, zone_name: str):
fraction_radiant = thermal_zone.lighting.radiative_fraction
# todo: fraction visible should come from catalog
fraction_visible = 0.3
method = 'Watts/Area'
factor_size = thermal_zone.total_floor_area / thermal_zone.footprint_area
watts_per_zone_floor_area = thermal_zone.lighting.density*factor_size
# todo: fraction replaceable should come from catalog
fraction_replaceable = 1
subcategory = f'ELECTRIC EQUIPMENT#{zone_name}#GeneralLights'
self._idf.newidfobject(self._LIGHTS,
Name=f'{zone_name}_lights',
Zone_or_ZoneList_Name=zone_name,
Schedule_Name=f'Lighting schedules {thermal_zone.usage_name}',
Design_Level_Calculation_Method=method,
Watts_per_Zone_Floor_Area=watts_per_zone_floor_area,
Fraction_Radiant=fraction_radiant,
Fraction_Visible=fraction_visible,
Fraction_Replaceable=fraction_replaceable,
EndUse_Subcategory=subcategory
)
def _add_appliances(self, thermal_zone, zone_name):
fuel_type = 'Electricity'
fraction_radiant = thermal_zone.appliances.radiative_fraction
fraction_latent = 0
method = 'Watts/Area'
factor_size = thermal_zone.total_floor_area / thermal_zone.footprint_area
watts_per_zone_floor_area = thermal_zone.appliances.density*factor_size
subcategory = f'ELECTRIC EQUIPMENT#{zone_name}#InteriorEquipment'
# _object = self._idf.newidfobject(self._APPLIANCES)
# print(vars(_object))
self._idf.newidfobject(self._APPLIANCES,
Fuel_Type=fuel_type,
Name=f'{zone_name}_appliance',
Zone_or_ZoneList_Name=zone_name,
Schedule_Name=f'Appliance schedules {thermal_zone.usage_name}',
Design_Level_Calculation_Method=method,
Power_per_Zone_Floor_Area=watts_per_zone_floor_area,
Fraction_Latent=fraction_latent,
Fraction_Radiant=fraction_radiant,
EndUse_Subcategory=subcategory
)
def _add_infiltration(self, thermal_zone, zone_name):
#for zone in self._idf.idfobjects["ZONE"]:
# if zone.Name == f'{zone_name}_infiltration':
# return
schedule = f'Infiltration schedules {thermal_zone.usage_name}'
#if schedule not in self._idf.idfobjects[self._HOURLY_SCHEDULE]:
# return
# todo: eliminate the factor
factorreduct=0.5
self._idf.newidfobject(self._INFILTRATION,
Name=f'{zone_name}_infiltration',
Zone_or_ZoneList_Name=zone_name,
Schedule_Name=schedule,
Design_Flow_Rate_Calculation_Method='AirChanges/Hour',
Air_Changes_per_Hour=thermal_zone.infiltration_rate_system_off*factorreduct
)
def _add_DHW(self, thermal_zone, zone_name):
fuel_type = 'Electricity'
method = 'Watts/Area'
factor_size = thermal_zone.total_floor_area / thermal_zone.footprint_area
peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow*factor_size
#_object = self._idf.newidfobject(self._DHW)
#print(vars(_object))
self._idf.newidfobject(self._DHW,
Name=f'{zone_name}_DHW',
Peak_Flow_Rate=peak_flow_rate,
Flow_Rate_Fraction_Schedule_Name=f'DHW_prof schedules {thermal_zone.usage_name}',
Target_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
EndUse_Subcategory=f'DHW {thermal_zone.usage_name}'
)
def _rename_building(self, city_name):
name = str(str(city_name.encode("utf-8")))
for building in self._idf.idfobjects[self._BUILDING]:
building.Name = f'Buildings in {name}'
building['Solar_Distribution'] = 'FullExterior'
def _remove_sizing_periods(self):
while len(self._idf.idfobjects[self._SIZING_PERIODS]) > 0:
self._idf.popidfobject(self._SIZING_PERIODS, 0)
def _remove_location(self):
self._idf.popidfobject(self._LOCATION, 0)
def _export(self):
"""
Export the idf file into the given path.
If buildings to calculate are provided, only those will appear in the output variables, otherwise all the city
buildings will be calculated.
If adjacent buildings are provided those buildings will be calculated, but will not appear in the output variables.
export type = "Surfaces|Block"
"""
self._remove_location()
self._remove_sizing_periods()
self._rename_building(self._city.name)
self._lod = self._city.level_of_detail.geometry
for building in self._city.buildings:
for internal_zone in building.internal_zones:
if internal_zone.thermal_zones is None:
continue
for thermal_zone in internal_zone.thermal_zones:
for thermal_boundary in thermal_zone.thermal_boundaries:
self._add_construction(thermal_boundary)
if thermal_boundary.parent_surface.vegetation is not None:
self._add_vegetation_material(thermal_boundary.parent_surface.vegetation)
for thermal_opening in thermal_boundary.thermal_openings:
self._add_window_construction_and_material(thermal_opening)
usage = thermal_zone.usage_name
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
self._add_infiltration_schedules(thermal_zone)
self._add_schedules(usage, 'Occupancy', thermal_zone.occupancy.occupancy_schedules)
self._add_schedules(usage, 'HVAC AVAIL', thermal_zone.thermal_control.hvac_availability_schedules)
self._add_schedules(usage, 'Heating thermostat', thermal_zone.thermal_control.heating_set_point_schedules)
self._add_schedules(usage, 'Cooling thermostat', thermal_zone.thermal_control.cooling_set_point_schedules)
self._add_schedules(usage, 'Lighting', thermal_zone.lighting.schedules)
self._add_schedules(usage, 'Appliance', thermal_zone.appliances.schedules)
self._add_schedules(usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules)
# self._add_service_temp_schedules(thermal_zone)
value = int(thermal_zone.domestic_hot_water.service_temperature)
self._add_constant_hourly_year_schedules(thermal_zone, value, 'DHW_temp')
self._add_people_activity_level_schedules(thermal_zone)
self._add_zone(thermal_zone, building.name)
self._add_heating_system(thermal_zone, building.name)
self._add_infiltration(thermal_zone, building.name)
self._add_occupancy(thermal_zone, building.name)
self._add_lighting(thermal_zone, building.name)
self._add_appliances(thermal_zone, building.name)
self._add_DHW(thermal_zone, building.name)
print('after schedules')
if self._export_type == "Surfaces":
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
if building.internal_zones[0].thermal_zones is not None:
self._add_surfaces(building, building.name)
else:
self._add_pure_geometry(building, building.name)
else:
self._add_shading(building)
else:
self._add_block(building)
# todo: this should change to specific variables per zone to process only the ones in the buildings_to_calculate
for _ in self._target_buildings:
continue
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Ideal Loads Supply Air Total Heating Energy",
Reporting_Frequency="Hourly",
)
#_object = self._idf.newidfobject("OUTPUT:VARIABLE")
#print(vars(_object))
self._idf.newidfobject(
"OUTPUT:VARIABLE",
Variable_Name="Zone Ideal Loads Supply Air Total Cooling Energy",
Reporting_Frequency="Hourly",
)
#self._idf.newidfobject(
# "OUTPUTCONTROL:TABLE:STYLE",
# Variable_Name="CommaAndHTML, JtoKWH",
#)
self._idf.match()
try:
self._idf.intersect_match()
except IndexError:
# seems to be a bug from geomeppy when surfaces cannot be intersected
pass
# post-process to erase windows associated to adiabatic walls
windows_list = []
for window in self._idf.idfobjects[self._WINDOW]:
found = False
for surface in self._idf.idfobjects[self._SURFACE]:
if window.Building_Surface_Name == surface.Name:
found = True
if not found:
windows_list.append(window)
for window in windows_list:
self._idf.removeidfobject(window)
self._idf.saveas(str(self._output_file))
return self._idf
def run(self):
"""
Start the energy plus simulation
"""
self._idf.run(expandobjects=False, readvars=True, output_directory=self._output_path,
output_prefix=f'{self._city.name}_')
def _add_block(self, building):
_points = self._matrix_to_2d_list(building.foot_print.coordinates)
self._idf.add_block(name=building.name, coordinates=_points, height=building.max_height,
num_stories=int(building.storeys_above_ground))
for surface in self._idf.idfobjects[self._SURFACE]:
for thermal_zone in building.thermal_zones:
for boundary in thermal_zone.thermal_boundaries:
if surface.Type == self.idf_surfaces[boundary.surface.type]:
surface.Construction_Name = boundary.construction_name
break
for usage in thermal_zone.usages:
surface.Zone_Name = usage.id
break
break
self._idf.intersect_match()
def _add_shading(self, building):
for surface in building.surfaces:
shading = self._idf.newidfobject(self._SHADING, Name=f'{surface.name}')
coordinates = self._matrix_to_list(surface.solid_polygon.coordinates,
self._city.lower_corner)
shading.setcoords(coordinates)
solar_reflectance = surface.short_wave_reflectance
self._idf.newidfobject(self._SHADING_PROPERTY,
Shading_Surface_Name=f'{surface.name}',
Diffuse_Solar_Reflectance_of_Unglazed_Part_of_Shading_Surface=solar_reflectance,
Fraction_of_Shading_Surface_That_Is_Glazed=0)
def _add_pure_geometry(self, building, zone_name):
for surface in building.surfaces:
idf_surface_type = self.idf_surfaces[surface.type]
outside_boundary_condition = 'Outdoors'
sun_exposure = 'SunExposed'
wind_exposure = 'WindExposed'
if surface.type == cte.GROUND:
outside_boundary_condition = 'Ground'
sun_exposure = 'NoSun'
wind_exposure = 'NoWind'
idf_surface = self._idf.newidfobject(self._SURFACE, Name=f'{surface.name}',
Surface_Type=idf_surface_type,
Zone_Name=zone_name,
Outside_Boundary_Condition=outside_boundary_condition,
Sun_Exposure=sun_exposure,
Wind_Exposure=wind_exposure)
coordinates = self._matrix_to_list(surface.solid_polygon.coordinates,
self._city.lower_corner)
idf_surface.setcoords(coordinates)
if self._lod >= 3:
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
for boundary in thermal_zone.thermal_boundaries:
self._add_windows_by_vertices(boundary)
else:
# idf only allows setting wwr for external walls
wwr = 0
self._idf.set_wwr(wwr)
def _add_surfaces(self, building, zone_name):
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
for boundary in thermal_zone.thermal_boundaries:
idf_surface_type = self.idf_surfaces[boundary.parent_surface.type]
outside_boundary_condition = 'Outdoors'
sun_exposure = 'SunExposed'
wind_exposure = 'WindExposed'
if boundary.parent_surface.type == cte.GROUND:
outside_boundary_condition = 'Ground'
sun_exposure = 'NoSun'
wind_exposure = 'NoWind'
if boundary.parent_surface.vegetation is not None:
construction_name = f'{boundary.construction_name}_{boundary.parent_surface.vegetation.name}'
else:
construction_name = boundary.construction_name
surface = self._idf.newidfobject(self._SURFACE, Name=f'{boundary.parent_surface.name}',
Surface_Type=idf_surface_type,
Zone_Name=zone_name,
Construction_Name=construction_name,
Outside_Boundary_Condition=outside_boundary_condition,
Sun_Exposure=sun_exposure,
Wind_Exposure=wind_exposure)
coordinates = self._matrix_to_list(boundary.parent_surface.solid_polygon.coordinates,
self._city.lower_corner)
surface.setcoords(coordinates)
if self._lod >= 3:
for internal_zone in building.internal_zones:
for thermal_zone in internal_zone.thermal_zones:
for boundary in thermal_zone.thermal_boundaries:
self._add_windows_by_vertices(boundary)
else:
# idf only allows setting wwr for external walls
wwr = 0
for surface in building.surfaces:
if surface.type == cte.WALL:
wwr = surface.associated_thermal_boundaries[0].window_ratio
self._idf.set_wwr(wwr, construction='window_construction_1')
def _add_windows_by_vertices(self, boundary):
raise NotImplementedError
def _compare_window_constructions(self, window_construction, opening):
glazing = window_construction['Outside_Layer']
for material in self._idf.idfobjects[self._WINDOW_MATERIAL_SIMPLE]:
if material['Name'] == glazing:
if material['UFactor'] == opening.overall_u_value and \
material['Solar_Heat_Gain_Coefficient'] == opening.g_value:
return True
return False
def _add_vegetation_material(self, vegetation):
for vegetation_material in self._idf.idfobjects[self._MATERIAL_ROOFVEGETATION]:
if vegetation_material.Name == vegetation.name:
return
soil = vegetation.soil
height = 0
leaf_area_index = 0
leaf_reflectivity = 0
leaf_emissivity = 0
minimal_stomatal_resistance = 0
for plant in vegetation.plants:
height += plant.percentage * plant.height
leaf_area_index += plant.percentage * plant.leaf_area_index
leaf_reflectivity += plant.percentage * plant.leaf_reflectivity
leaf_emissivity += plant.percentage * plant.leaf_emissivity
minimal_stomatal_resistance += plant.percentage * plant.minimal_stomatal_resistance
self._idf.newidfobject(self._MATERIAL_ROOFVEGETATION,
Name=vegetation.name,
Height_of_Plants=height,
Leaf_Area_Index=leaf_area_index,
Leaf_Reflectivity=leaf_reflectivity,
Leaf_Emissivity=leaf_emissivity,
Minimum_Stomatal_Resistance=minimal_stomatal_resistance,
Soil_Layer_Name=soil.name,
Roughness=soil.roughness,
Thickness=vegetation.soil_thickness,
Conductivity_of_Dry_Soil=soil.dry_conductivity,
Density_of_Dry_Soil=soil.dry_density,
Specific_Heat_of_Dry_Soil=soil.dry_specific_heat,
Thermal_Absorptance=soil.thermal_absorptance,
Solar_Absorptance=soil.solar_absorptance,
Visible_Absorptance=soil.visible_absorptance,
Saturation_Volumetric_Moisture_Content_of_the_Soil_Layer=
soil.saturation_volumetric_moisture_content,
Residual_Volumetric_Moisture_Content_of_the_Soil_Layer=
soil.residual_volumetric_moisture_content,
Initial_Volumetric_Moisture_Content_of_the_Soil_Layer=
soil.initial_volumetric_moisture_content,
Moisture_Diffusion_Calculation_Method=self._SIMPLE)