import pandas as pd from scripts.geojson_creator import process_geojson from pathlib import Path import subprocess from hub.imports.geometry_factory import GeometryFactory from hub.helpers.dictionaries import Dictionaries from hub.imports.construction_factory import ConstructionFactory from hub.imports.usage_factory import UsageFactory from hub.imports.weather_factory import WeatherFactory from hub.imports.results_factory import ResultFactory from scripts.solar_angles import CitySolarAngles from scripts.ep_run_enrich import energy_plus_workflow import hub.helpers.constants as cte from hub.exports.exports_factory import ExportsFactory from scripts.pv_sizing_and_simulation import PVSizingSimulation # Specify the GeoJSON file path geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0005) file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson') # Specify the output path for the PDF file output_path = (Path(__file__).parent / 'out_files').resolve() # Create city object from GeoJSON file city = GeometryFactory('geojson', path=file_path, height_field='height', year_of_construction_field='year_of_construction', function_field='function', function_to_hub=Dictionaries().montreal_function_to_hub_function).city # Enrich city data ConstructionFactory('nrcan', city).enrich() UsageFactory('nrcan', city).enrich() WeatherFactory('epw', city).enrich() ExportsFactory('sra', city, output_path).export() sra_path = (output_path / f'{city.name}_sra.xml').resolve() subprocess.run(['sra', str(sra_path)]) ResultFactory('sra', city, output_path).enrich() energy_plus_workflow(city) solar_angles = CitySolarAngles(city.name, city.latitude, city.longitude, tilt_angle=45, surface_azimuth_angle=180).calculate df = pd.DataFrame() df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)', 'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)'] for building in city.buildings: ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]] pv_sizing_simulation = PVSizingSimulation(building, solar_angles, tilt_angle=45, module_height=1, module_width=2, ghi=ghi) pv_sizing_simulation.pv_output() yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000 yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000 yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3) yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5) yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000 roof_area = building.roofs[0].perimeter_area used_roof = pv_sizing_simulation.available_space() number_of_pv_panels = pv_sizing_simulation.total_number_of_panels yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / 1000 df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area, used_roof, number_of_pv_panels, yearly_pv] df.to_csv(output_path / 'pv.csv')