""" Total operational costs module SPDX - License - Identifier: LGPL - 3.0 - or -later Copyright © 2024 Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca """ import math import pandas as pd from hub.city_model_structure.building import Building import hub.helpers.constants as cte from scripts.costs.configuration import Configuration from scripts.costs.cost_base import CostBase from scripts.costs.peak_load import PeakLoad class TotalOperationalCosts(CostBase): """ Total Operational costs class """ def __init__(self, building: Building, configuration: Configuration): super().__init__(building, configuration) columns_list = self.columns() self._yearly_operational_costs = pd.DataFrame( index=self._rng, columns=columns_list, dtype='float' ) def calculate(self) -> pd.DataFrame: """ Calculate total operational costs :return: pd.DataFrame """ building = self._building fuel_consumption_breakdown = building.energy_consumption_breakdown archetype = self._archetype total_floor_area = self._total_floor_area if archetype.function == 'residential': factor = total_floor_area / 80 else: factor = 1 total_electricity_consumption = sum(self._building.energy_consumption_breakdown[cte.ELECTRICITY].values()) peak_electricity_load = PeakLoad(self._building).electricity_peak_load peak_load_value = peak_electricity_load.max(axis=1) peak_electricity_demand = peak_load_value[1] / 1000 # self._peak_electricity_demand adapted to kW fuels = archetype.operational_cost.fuels for fuel in fuels: if fuel.type in fuel_consumption_breakdown.keys(): if fuel.type == cte.ELECTRICITY: variable_electricity_cost_year_0 = ( total_electricity_consumption * fuel.variable[0] / 1000 ) peak_electricity_cost_year_0 = peak_electricity_demand * fuel.fixed_power * 12 monthly_electricity_cost_year_0 = fuel.fixed_monthly * 12 * factor for year in range(1, self._configuration.number_of_years + 1): price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year) price_increase_peak_electricity = math.pow(1 + self._configuration.electricity_peak_index, year) self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Peak'] = ( peak_electricity_cost_year_0 * price_increase_peak_electricity ) self._yearly_operational_costs.at[year, 'Fixed Costs Electricity Monthly'] = ( monthly_electricity_cost_year_0 * price_increase_peak_electricity ) if not isinstance(variable_electricity_cost_year_0, pd.DataFrame): variable_costs_electricity = variable_electricity_cost_year_0 * price_increase_electricity else: variable_costs_electricity = float(variable_electricity_cost_year_0.iloc[0] * price_increase_electricity) self._yearly_operational_costs.at[year, 'Variable Costs Electricity'] = ( variable_costs_electricity ) else: fuel_fixed_cost = fuel.fixed_monthly * 12 * factor if fuel.type == cte.BIOMASS: conversion_factor = 1 else: conversion_factor = fuel.density[0] variable_cost_fuel = ( ((sum(fuel_consumption_breakdown[fuel.type].values()) * 3600)/(1e6*fuel.lower_heating_value[0] * conversion_factor)) * fuel.variable[0]) for year in range(1, self._configuration.number_of_years + 1): price_increase_gas = math.pow(1 + self._configuration.gas_price_index, year) self._yearly_operational_costs.at[year, f'Fixed Costs {fuel.type}'] = fuel_fixed_cost * price_increase_gas self._yearly_operational_costs.at[year, f'Variable Costs {fuel.type}'] = ( variable_cost_fuel * price_increase_gas) self._yearly_operational_costs.fillna(0, inplace=True) return self._yearly_operational_costs def columns(self): columns_list = [] fuels = [key for key in self._building.energy_consumption_breakdown.keys()] for fuel in fuels: if fuel == cte.ELECTRICITY: columns_list.append('Fixed Costs Electricity Peak') columns_list.append('Fixed Costs Electricity Monthly') columns_list.append('Variable Costs Electricity') else: columns_list.append(f'Fixed Costs {fuel}') columns_list.append(f'Variable Costs {fuel}') return columns_list