CityBEM-CityLayers-SaeedRay.../energy_system_retrofit.py

64 lines
3.6 KiB
Python

from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.energy_system_analysis_report import EnergySystemAnalysisReport
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing import SystemSizing
from scripts.energy_system_retrofit_results import system_results, new_system_results
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
# Specify the GeoJSON file path
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
energy_plus_workflow(city)
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
EnergySystemsFactory('montreal_custom', city).enrich()
SystemSizing(city.buildings).montreal_custom()
current_system = new_system_results(city.buildings)
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
EnergySystemsSimulationFactory('archetype1', building=building, output_path=output_path).enrich()
print(building.energy_consumption_breakdown[cte.ELECTRICITY][cte.COOLING] +
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.HEATING] +
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.DOMESTIC_HOT_WATER])
new_system = new_system_results(city.buildings)
# EnergySystemAnalysisReport(city, output_path).create_report(current_system, new_system)
for building in city.buildings:
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
costs.to_csv(output_path / f'{building.name}_lcc.csv')
(costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
to_csv(output_path / f'{building.name}_op.csv'))
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
output_path / f'{building.name}_cc.csv')
costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
output_path / f'{building.name}_m.csv')