CityBEM-CityLayers-SaeedRay.../hub/imports/results/ep_multiple_buildings.py

80 lines
4.2 KiB
Python

"""
Insel monthly energy balance
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Project collaborator Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
from pathlib import Path
from hub.helpers.monthly_values import MonthlyValues
import csv
import hub.helpers.constants as cte
class EnergyPlusMultipleBuildings:
def __init__(self, city, base_path):
self._city = city
self._base_path = base_path
def _building_energy_demands(self, energy_plus_output_file_path):
buildings_energy_demands = {}
with open(Path(energy_plus_output_file_path).resolve(), 'r', encoding='utf8') as csv_file:
csv_output = list(csv.DictReader(csv_file))
for building in self._city.buildings:
building_name = building.name
buildings_energy_demands[f'Building {building_name} Heating Demand (J)'] = [
float(
row[f"{building_name} IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Supply Air Total Heating Energy [J](Hourly)"])
for row in csv_output
]
buildings_energy_demands[f'Building {building_name} Cooling Demand (J)'] = [
float(
row[f"{building_name} IDEAL LOADS AIR SYSTEM:Zone Ideal Loads Supply Air Total Cooling Energy [J](Hourly)"])
for row in csv_output
]
buildings_energy_demands[f'Building {building_name} DHW Demand (W)'] = [
float(row[f"DHW {building.name}:Water Use Equipment Heating Rate [W](Hourly)"])
for row in csv_output
]
buildings_energy_demands[f'Building {building_name} Appliances (W)'] = [
float(row[f"{building_name}_APPLIANCE:Other Equipment Electricity Rate [W](Hourly)"])
for row in csv_output
]
buildings_energy_demands[f'Building {building_name} Lighting (W)'] = [
float(row[f"{building_name}:Zone Lights Electricity Rate [W](Hourly)"]) for row in csv_output
]
return buildings_energy_demands
def enrich(self):
"""
Enrich the city by using the energy plus workflow output files (J)
:return: None
"""
file_name = f'{self._city.name}_out.csv'
energy_plus_output_file_path = Path(self._base_path / file_name).resolve()
if energy_plus_output_file_path.is_file():
building_energy_demands = self._building_energy_demands(energy_plus_output_file_path)
for building in self._city.buildings:
building.heating_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Heating Demand (J)']
building.cooling_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Cooling Demand (J)']
building.domestic_hot_water_heat_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} DHW Demand (W)']
building.appliances_electrical_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Appliances (W)']
building.lighting_electrical_demand[cte.HOUR] = building_energy_demands[f'Building {building.name} Lighting (W)']
building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR])
building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR])
building.domestic_hot_water_heat_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.domestic_hot_water_heat_demand[cte.HOUR]))
building.appliances_electrical_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.appliances_electrical_demand[cte.HOUR]))
building.lighting_electrical_demand[cte.MONTH] = (
MonthlyValues.get_total_month(building.lighting_electrical_demand[cte.HOUR]))
building.heating_demand[cte.YEAR] = [sum(building.heating_demand[cte.MONTH])]
building.cooling_demand[cte.YEAR] = [sum(building.cooling_demand[cte.MONTH])]
building.domestic_hot_water_heat_demand[cte.YEAR] = [sum(building.domestic_hot_water_heat_demand[cte.MONTH])]
building.appliances_electrical_demand[cte.YEAR] = [sum(building.appliances_electrical_demand[cte.MONTH])]
building.lighting_electrical_demand[cte.YEAR] = [sum(building.lighting_electrical_demand[cte.MONTH])]