Setup sra, meb, and building selection of 500 m^2 or more

This commit is contained in:
Koa Wells 2023-04-12 18:19:34 -04:00
parent 0ac7f78196
commit 5deeb9c355
4 changed files with 8892 additions and 31 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,16 +1,29 @@
import json
import random
import datetime
from pathlib import Path
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.results_factory import ResultFactory
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.exports.exports_factory import ExportsFactory
from hub.helpers.data.montreal_function_to_hub_function import MontrealFunctionToHubFunction
from sra import Sra
from meb import Meb
class EnergyValidation:
def __init__(self):
pass
self.weather_file = Path('./data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw').resolve()
self.climate_file_name = 'Montreal'
self.tmp_folder = Path('./tmp').resolve()
self.storage_path = Path('./storage').resolve()
self.climate_file = Path(f'{self.storage_path}/{self.climate_file_name}.cli').resolve()
self.meb_folder = Path('./results/meb').resolve()
self.ep_folder = Path('./results/ep').resolve()
def _sort_buildings(self, buildings_to_simulate):
sorted_buildings = {}
for building in buildings_to_simulate:
@ -22,46 +35,76 @@ class EnergyValidation:
def run(self, building_set, building_quantities):
sorted_buildings = self._sort_buildings(building_set)
buildings_to_simulate = []
building_to_simulate = []
min_m2_satisfied = False
for code_utili in building_quantities:
if code_utili in sorted_buildings:
for building in range(building_quantities[code_utili]):
buildings_to_simulate.append(sorted_buildings[code_utili]
[random.randrange(len(sorted_buildings[code_utili]))])
if code_utili not in sorted_buildings:
print(f'CODE_UTILI:{code_utili} is not found in the provided dataset.')
else:
print(f'{code_utili} is not found in the provided dataset.')
for building in range(building_quantities[code_utili]):
# only select buildings with an area of 500 m^2 or more
while not min_m2_satisfied:
building_to_simulate.append(sorted_buildings[code_utili][random.randrange(
len(sorted_buildings[code_utili]))])
if building_to_simulate[0]['bldgarea'] < 500:
building_to_simulate.clear()
else:
min_m2_satisfied = True
building_id = building_to_simulate[0]['id']
geojson = {
"type": "FeatureCollection",
"features": buildings_to_simulate
"features": building_to_simulate
}
geojson_file_name = f'energy_validation{datetime.datetime.now().strftime("_%Y-%m-%d_%H-%M-%S")}.geojson'
geojson_file = open(geojson_file_name, 'w')
geojson_file = open(f'tmp/{building_id}_energy_validation.geojson', 'w')
geojson_file.write(json.dumps(geojson, indent=2))
geojson_file.close()
city = GeometryFactory('geojson',
path=geojson_file_name,
path=f'tmp/{building_id}_energy_validation.geojson',
height_field='building_height',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=MontrealFunctionToHubFunction().dictionary).city
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich(
UsageFactory('nrcan', city).enrich()
if city.climate_reference_city is None:
city.name = f'Concordia current status {building_id}'
city.climate_reference_city = city.location
self.climate_file_name = city.location
city.climate_file = self.climate_file
print(f'{building_id} starting sra')
start = datetime.datetime.now()
ExportsFactory('sra', city, self.tmp_folder, weather_file=self.weather_file, weather_format='epw').export()
sra_file = (self.tmp_folder / f'{city.name}_sra.xml').resolve()
Sra(sra_file, self.tmp_folder).run()
ResultFactory('sra', city, self.tmp_folder).enrich()
sra_time = datetime.datetime.now() - start
print(f"{building_id} SRA time: {sra_time}\n")
print(f'{building_id} starting meb')
start = datetime.datetime.now()
for building in city.buildings:
building.attic_heated = 0
building.basement_heated = 1
EnergyBuildingsExportsFactory('insel_monthly_energy_balance', city, self.meb_folder).export()
Meb(self.meb_folder).run()
meb_time = datetime.datetime.now() - start
print(f"{building_id} meb time: {meb_time}\n")
#print('starting energy plus')
building_to_simulate.clear()
# test_file = open('test.geojson', 'w')
# test_file.write(json.dumps(sorted_buildings, indent=2))
# test_file.close()
data_file = open('data/VMTrial_cleaned.geojson', 'r')
city = json.load(data_file)
buildings = city['features']

23
meb.py Normal file
View File

@ -0,0 +1,23 @@
import subprocess
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
import glob
class Meb:
def __init__(self, file_path):
"""
SRA class
:param file_path: insel file path
"""
self._file_path = file_path
self._executable = 'insel'
def run(self):
"""
Calls the software
"""
try:
_insel_files = glob.glob(f'{self._file_path}/*.insel')
for insel_file in _insel_files:
subprocess.run([self._executable, str(insel_file)], stdout=subprocess.DEVNULL)
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)

27
sra.py Normal file
View File

@ -0,0 +1,27 @@
import subprocess
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
import platform
class Sra:
def __init__(self, file_path, output_file_path):
"""
SRA class
:param file_path: _sra.xml file path
:param output_file_path: path to output the sra calculation
"""
self._file_path = file_path
self._output_file_path = output_file_path
if platform.system() == 'Linux':
self._executable = 'citysim_sra'
elif platform.system() == 'Windows':
self._executable = 'shortwave_integer'
def run(self):
"""
Calls the software
"""
try:
subprocess.run([self._executable, str(self._file_path)], stdout=subprocess.DEVNULL)
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)