feat: pv calculation code added and tested
This commit is contained in:
parent
4cd79c2125
commit
6ec598218c
@ -317,7 +317,8 @@ LATENT = 'Latent'
|
||||
LITHIUMION = 'Lithium Ion'
|
||||
NICD = 'NiCd'
|
||||
LEADACID = 'Lead Acid'
|
||||
|
||||
THERMAL = 'thermal'
|
||||
ELECTRICAL = 'electrical'
|
||||
# Geometry
|
||||
EPSILON = 0.0000001
|
||||
|
||||
|
@ -1,103 +1,126 @@
|
||||
import csv
|
||||
from pathlib import Path
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
|
||||
class ArchetypeBasedDemand:
|
||||
def __init__(self, city, base_path):
|
||||
self.city = city
|
||||
self.archetype_csv_path = Path(base_path)
|
||||
self.archetype_data = self._load_archetype_data()
|
||||
def __init__(self, city, base_path):
|
||||
self.city = city
|
||||
self.archetype_csv_path = Path(base_path)
|
||||
self.archetype_data = self._load_archetype_data()
|
||||
|
||||
def _load_archetype_data(self):
|
||||
archetype_data = {}
|
||||
with open(self.archetype_csv_path, 'r', encoding='utf-8-sig') as csv_file:
|
||||
csv_reader = csv.DictReader(csv_file)
|
||||
csv_reader.fieldnames = [field.strip() for field in csv_reader.fieldnames]
|
||||
for row in csv_reader:
|
||||
standardized_row = {key.strip(): value.strip() for key, value in row.items()}
|
||||
usage = standardized_row['Usage']
|
||||
vintage = standardized_row['Vintage']
|
||||
full_key = f"{usage} {vintage}"
|
||||
def _load_archetype_data(self):
|
||||
archetype_data = {}
|
||||
with open(self.archetype_csv_path, 'r', encoding='utf-8-sig') as csv_file:
|
||||
csv_reader = csv.DictReader(csv_file)
|
||||
csv_reader.fieldnames = [field.strip() for field in csv_reader.fieldnames]
|
||||
for row in csv_reader:
|
||||
standardized_row = {key.strip(): value.strip() for key, value in row.items()}
|
||||
usage = standardized_row['Usage']
|
||||
vintage = standardized_row['Vintage']
|
||||
full_key = f"{usage} {vintage}"
|
||||
|
||||
# Initialize the archetype entry if not present
|
||||
if full_key not in archetype_data:
|
||||
# Initialize dictionaries for each demand type with empty lists
|
||||
archetype_data[full_key] = {
|
||||
'Heating': [],
|
||||
'Cooling': [],
|
||||
'DHW': [],
|
||||
'Equipment': [],
|
||||
'Lighting': [],
|
||||
}
|
||||
# Initialize the archetype entry if not present
|
||||
if full_key not in archetype_data:
|
||||
# Initialize dictionaries for each demand type with empty lists
|
||||
archetype_data[full_key] = {
|
||||
'Heating': [],
|
||||
'Cooling': [],
|
||||
'DHW': [],
|
||||
'Equipment': [],
|
||||
'Lighting': [],
|
||||
}
|
||||
|
||||
# Append the demand values to the lists
|
||||
archetype_data[full_key]['Heating'].append(float(standardized_row['Heating']))
|
||||
archetype_data[full_key]['Cooling'].append(float(standardized_row['Cooling']))
|
||||
archetype_data[full_key]['DHW'].append(float(standardized_row['DHW']))
|
||||
archetype_data[full_key]['Equipment'].append(float(standardized_row['Equipment']))
|
||||
archetype_data[full_key]['Lighting'].append(float(standardized_row['Lighting']))
|
||||
return archetype_data
|
||||
# Append the demand values to the lists
|
||||
archetype_data[full_key]['Heating'].append(float(standardized_row['Heating']))
|
||||
archetype_data[full_key]['Cooling'].append(float(standardized_row['Cooling']))
|
||||
archetype_data[full_key]['DHW'].append(float(standardized_row['DHW']))
|
||||
archetype_data[full_key]['Equipment'].append(float(standardized_row['Equipment']))
|
||||
archetype_data[full_key]['Lighting'].append(float(standardized_row['Lighting']))
|
||||
return archetype_data
|
||||
|
||||
def _get_archetype_key(self, building):
|
||||
function = building.function.lower()
|
||||
year = building.year_of_construction
|
||||
height = building.eave_height
|
||||
adjacency = building.adjacency.lower()
|
||||
def _get_archetype_key(self, building):
|
||||
function = building.function.lower()
|
||||
year = building.year_of_construction
|
||||
height = building.eave_height
|
||||
adjacency = building.adjacency.lower()
|
||||
|
||||
if function in ['residential', 'multifamily house', 'single family house']:
|
||||
if height < 6 and adjacency == 'detached':
|
||||
usage = 'Single Family'
|
||||
elif height < 6 and adjacency == 'attached':
|
||||
usage = 'Row house'
|
||||
elif 6 <= height <= 10 and adjacency == 'detached':
|
||||
usage = 'Duplex/triplex'
|
||||
elif 6 <= height <= 10 and adjacency == 'attached':
|
||||
usage = 'Small MURBs'
|
||||
elif 10 < height <= 15:
|
||||
usage = 'Medium MURBs'
|
||||
elif 15 < height:
|
||||
usage = 'Large MURBs'
|
||||
else:
|
||||
usage = "No Archetype!"
|
||||
elif function in ['office', 'office and administration']:
|
||||
usage = 'Office'
|
||||
elif function in ['commercial', 'retail shop without refrigerated food', 'retail shop with refrigerated food',
|
||||
'stand alone retail', 'strip mall']:
|
||||
if adjacency == 'attached':
|
||||
usage = 'Commercial attached'
|
||||
else:
|
||||
usage = 'Commercial detached'
|
||||
else:
|
||||
usage = "No Archetypes yet"
|
||||
if function in ['residential', 'multifamily house', 'single family house']:
|
||||
if height < 6 and adjacency == 'detached':
|
||||
usage = 'Single Family'
|
||||
elif height < 6 and adjacency == 'attached':
|
||||
usage = 'Row house'
|
||||
elif 6 <= height <= 10 and adjacency == 'detached':
|
||||
usage = 'Duplex/triplex'
|
||||
elif 6 <= height <= 10 and adjacency == 'attached':
|
||||
usage = 'Small MURBs'
|
||||
elif 10 < height <= 15:
|
||||
usage = 'Medium MURBs'
|
||||
elif 15 < height:
|
||||
usage = 'Large MURBs'
|
||||
else:
|
||||
usage = "No Archetype!"
|
||||
elif function in ['office', 'office and administration']:
|
||||
usage = 'Office'
|
||||
elif function in ['commercial', 'retail shop without refrigerated food', 'retail shop with refrigerated food',
|
||||
'stand alone retail', 'strip mall']:
|
||||
if adjacency == 'attached':
|
||||
usage = 'Commercial attached'
|
||||
else:
|
||||
usage = 'Commercial detached'
|
||||
else:
|
||||
usage = "No Archetypes yet"
|
||||
|
||||
if year <= 1947:
|
||||
vintage = 'Pre 1947'
|
||||
elif 1947 < year <= 1983:
|
||||
vintage = '1947-1983'
|
||||
elif 1983 < year <= 2010:
|
||||
vintage = '1984-2010'
|
||||
else:
|
||||
vintage = 'Post 2010'
|
||||
if year <= 1947:
|
||||
vintage = 'Pre 1947'
|
||||
elif 1947 < year <= 1983:
|
||||
vintage = '1947-1983'
|
||||
elif 1983 < year <= 2010:
|
||||
vintage = '1984-2010'
|
||||
else:
|
||||
vintage = 'Post 2010'
|
||||
|
||||
if usage:
|
||||
archetype_key = f"{usage} {vintage}"
|
||||
return archetype_key
|
||||
else:
|
||||
return None
|
||||
if usage:
|
||||
archetype_key = f"{usage} {vintage}"
|
||||
return archetype_key
|
||||
else:
|
||||
return None
|
||||
|
||||
def _assign_demands(self, building, demand, area):
|
||||
building.heating_demand = {'hour': [value * area for value in demand['Heating']]}
|
||||
building.cooling_demand = {'hour': [value * area for value in demand['Cooling']]}
|
||||
building.domestic_hot_water_heat_demand = {'hour': [value * area for value in demand['DHW']]}
|
||||
building.appliances_electrical_demand = {'hour': [value * area for value in demand['Equipment']]}
|
||||
building.lighting_electrical_demand = {'hour': [value * area for value in demand['Lighting']]}
|
||||
def _assign_demands(self, building, demand, area):
|
||||
hourly_heating_demand = [value * area for value in demand['Heating']]
|
||||
building.heating_demand = {cte.HOUR: hourly_heating_demand,
|
||||
cte.MONTH: MonthlyValues.get_total_month(hourly_heating_demand),
|
||||
cte.YEAR: [sum(hourly_heating_demand)]
|
||||
}
|
||||
hourly_cooling_demand = [value * area for value in demand['Cooling']]
|
||||
building.cooling_demand = {cte.HOUR: hourly_cooling_demand,
|
||||
cte.MONTH: MonthlyValues.get_total_month(hourly_cooling_demand),
|
||||
cte.YEAR: [sum(hourly_cooling_demand)]
|
||||
}
|
||||
hourly_dhw_demand = [value * area for value in demand['DHW']]
|
||||
building.domestic_hot_water_heat_demand = {cte.HOUR: hourly_dhw_demand,
|
||||
cte.MONTH: MonthlyValues.get_total_month(hourly_dhw_demand),
|
||||
cte.YEAR: [sum(hourly_dhw_demand)]
|
||||
}
|
||||
hourly_appliance_demand = [value * area for value in demand['Equipment']]
|
||||
building.appliances_electrical_demand = {cte.HOUR: hourly_appliance_demand,
|
||||
cte.MONTH: MonthlyValues.get_total_month(hourly_appliance_demand),
|
||||
cte.YEAR: [sum(hourly_appliance_demand)]
|
||||
}
|
||||
hourly_lighting_demand = [value * area for value in demand['Lighting']]
|
||||
building.lighting_electrical_demand = {cte.HOUR: hourly_lighting_demand,
|
||||
cte.MONTH: MonthlyValues.get_total_month(hourly_lighting_demand),
|
||||
cte.YEAR: [sum(hourly_lighting_demand)]
|
||||
}
|
||||
|
||||
def enrich(self):
|
||||
for building in self.city.buildings:
|
||||
archetype_key = self._get_archetype_key(building)
|
||||
print(archetype_key)
|
||||
if archetype_key and archetype_key in self.archetype_data:
|
||||
demand = self.archetype_data[archetype_key]
|
||||
area = building.thermal_zones_from_internal_zones[0].total_floor_area
|
||||
self._assign_demands(building, demand, area)
|
||||
else:
|
||||
print(f"No archetype found for building: {building.name} with key: {archetype_key}")
|
||||
def enrich(self):
|
||||
for building in self.city.buildings:
|
||||
archetype_key = self._get_archetype_key(building)
|
||||
print(archetype_key)
|
||||
if archetype_key and archetype_key in self.archetype_data:
|
||||
demand = self.archetype_data[archetype_key]
|
||||
area = building.thermal_zones_from_internal_zones[0].total_floor_area
|
||||
self._assign_demands(building, demand, area)
|
||||
else:
|
||||
print(f"No archetype found for building: {building.name} with key: {archetype_key}")
|
||||
|
57
main.py
57
main.py
@ -1,11 +1,26 @@
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from pv_assessment.electricity_demand_calculator import HourlyElectricityDemand
|
||||
from pv_assessment.pv_system_assessment import PvSystemAssessment
|
||||
from pv_assessment.solar_calculator import SolarCalculator
|
||||
|
||||
input_file = "data/cmm_test_corrected.geojson"
|
||||
demand_file = "data/energy_demand_data.csv"
|
||||
|
||||
# Define specific paths for outputs from SRA (Simplified Radiosity Algorith) and PV calculation processes
|
||||
output_path = (Path(__file__).parent.parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
pv_assessment_path = output_path / 'pv_outputs'
|
||||
pv_assessment_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(
|
||||
"geojson",
|
||||
input_file,
|
||||
@ -15,5 +30,45 @@ city = GeometryFactory(
|
||||
adjacency_field="adjacency",
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ResultFactory('archetypes', city, demand_file).enrich()
|
||||
# Export the city data in SRA-compatible format to facilitate solar radiation assessment
|
||||
ExportsFactory('sra', city, sra_output_path).export()
|
||||
# Run SRA simulation using an external command, passing the generated SRA XML file path as input
|
||||
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
# Enrich city data with SRA simulation results for subsequent analysis
|
||||
ResultFactory('sra', city, sra_output_path).enrich()
|
||||
# # Initialize solar calculation parameters (e.g., azimuth, altitude) and compute irradiance and solar angles
|
||||
tilt_angle = 37
|
||||
solar_parameters = SolarCalculator(city=city,
|
||||
surface_azimuth_angle=180,
|
||||
tilt_angle=tilt_angle,
|
||||
standard_meridian=-75)
|
||||
solar_angles = solar_parameters.solar_angles # Obtain solar angles for further analysis
|
||||
solar_parameters.tilted_irradiance_calculator() # Calculate the solar radiation on a tilted surface
|
||||
# Assignation of Energy System Archetypes to Buildings
|
||||
#TODO this needs to be modified. We should either use the existing percentages or assign systems based on building
|
||||
# functions
|
||||
for building in city.buildings:
|
||||
building.energy_systems_archetype_name = 'Grid Tied PV System'
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
electricity_demand = HourlyElectricityDemand(building).calculate()
|
||||
PvSystemAssessment(building=building,
|
||||
pv_system=None,
|
||||
battery=None,
|
||||
electricity_demand=electricity_demand,
|
||||
tilt_angle=tilt_angle,
|
||||
solar_angles=solar_angles,
|
||||
pv_installation_type='rooftop',
|
||||
simulation_model_type='explicit',
|
||||
module_model_name=None,
|
||||
inverter_efficiency=0.95,
|
||||
system_catalogue_handler=None,
|
||||
roof_percentage_coverage=0.75,
|
||||
facade_coverage_percentage=0,
|
||||
csv_output=False,
|
||||
output_path=pv_assessment_path).enrich()
|
||||
|
||||
print("done")
|
||||
|
75
pv_assessment/electricity_demand_calculator.py
Normal file
75
pv_assessment/electricity_demand_calculator.py
Normal file
@ -0,0 +1,75 @@
|
||||
import hub.helpers.constants as cte
|
||||
class HourlyElectricityDemand:
|
||||
def __init__(self, building):
|
||||
self.building = building
|
||||
|
||||
def calculate(self):
|
||||
hourly_electricity_consumption = []
|
||||
energy_systems = self.building.energy_systems
|
||||
appliance = self.building.appliances_electrical_demand[cte.HOUR] if self.building.appliances_electrical_demand else 0
|
||||
lighting = self.building.lighting_electrical_demand[cte.HOUR] if self.building.lighting_electrical_demand else 0
|
||||
elec_heating = 0
|
||||
elec_cooling = 0
|
||||
elec_dhw = 0
|
||||
if cte.HEATING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_heating = 1
|
||||
if cte.COOLING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_cooling = 1
|
||||
if cte.DOMESTIC_HOT_WATER in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_dhw = 1
|
||||
heating = None
|
||||
cooling = None
|
||||
dhw = None
|
||||
|
||||
if elec_heating == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.HEATING in generation_system.energy_consumption:
|
||||
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
heating = [x / 2 for x in self.building.heating_consumption[cte.HOUR]]
|
||||
else:
|
||||
heating = self.building.heating_consumption[cte.HOUR]
|
||||
|
||||
if elec_dhw == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
|
||||
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
dhw = [x / 2 for x in self.building.domestic_hot_water_consumption[cte.HOUR]]
|
||||
else:
|
||||
dhw = self.building.domestic_hot_water_consumption[cte.HOUR]
|
||||
|
||||
if elec_cooling == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.COOLING in generation_system.energy_consumption:
|
||||
cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
cooling = [x / 2 for x in self.building.cooling_consumption[cte.HOUR]]
|
||||
else:
|
||||
cooling = self.building.cooling_consumption[cte.HOUR]
|
||||
|
||||
for i in range(8760):
|
||||
hourly = 0
|
||||
if isinstance(appliance, list):
|
||||
hourly += appliance[i]
|
||||
if isinstance(lighting, list):
|
||||
hourly += lighting[i]
|
||||
if heating is not None:
|
||||
hourly += heating[i]
|
||||
if cooling is not None:
|
||||
hourly += cooling[i]
|
||||
if dhw is not None:
|
||||
hourly += dhw[i]
|
||||
hourly_electricity_consumption.append(hourly)
|
||||
return hourly_electricity_consumption
|
225
pv_assessment/pv_system_assessment.py
Normal file
225
pv_assessment/pv_system_assessment.py
Normal file
@ -0,0 +1,225 @@
|
||||
import math
|
||||
import csv
|
||||
import hub.helpers.constants as cte
|
||||
from pv_assessment.electricity_demand_calculator import HourlyElectricityDemand
|
||||
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class PvSystemAssessment:
|
||||
def __init__(self, building=None, pv_system=None, battery=None, electricity_demand=None, tilt_angle=None,
|
||||
solar_angles=None, pv_installation_type=None, simulation_model_type=None, module_model_name=None,
|
||||
inverter_efficiency=None, system_catalogue_handler=None, roof_percentage_coverage=None,
|
||||
facade_coverage_percentage=None, csv_output=False, output_path=None):
|
||||
"""
|
||||
:param building:
|
||||
:param tilt_angle:
|
||||
:param solar_angles:
|
||||
:param simulation_model_type:
|
||||
:param module_model_name:
|
||||
:param inverter_efficiency:
|
||||
:param system_catalogue_handler:
|
||||
:param roof_percentage_coverage:
|
||||
:param facade_coverage_percentage:
|
||||
"""
|
||||
self.building = building
|
||||
self.electricity_demand = electricity_demand
|
||||
self.tilt_angle = tilt_angle
|
||||
self.solar_angles = solar_angles
|
||||
self.pv_installation_type = pv_installation_type
|
||||
self.simulation_model_type = simulation_model_type
|
||||
self.module_model_name = module_model_name
|
||||
self.inverter_efficiency = inverter_efficiency
|
||||
self.system_catalogue_handler = system_catalogue_handler
|
||||
self.roof_percentage_coverage = roof_percentage_coverage
|
||||
self.facade_coverage_percentage = facade_coverage_percentage
|
||||
self.pv_hourly_generation = None
|
||||
self.t_cell = None
|
||||
self.results = {}
|
||||
self.csv_output = csv_output
|
||||
self.output_path = output_path
|
||||
if pv_system is not None:
|
||||
self.pv_system = pv_system
|
||||
else:
|
||||
for energy_system in self.building.energy_systems:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
self.pv_system = generation_system
|
||||
if battery is not None:
|
||||
self.battery = battery
|
||||
else:
|
||||
for energy_system in self.building.energy_systems:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC and generation_system.energy_storage_systems is not None:
|
||||
for storage_system in generation_system.energy_storage_systems:
|
||||
if storage_system.type_energy_stored == cte.ELECTRICAL:
|
||||
self.battery = storage_system
|
||||
|
||||
@staticmethod
|
||||
def explicit_model(pv_system, inverter_efficiency, number_of_panels, irradiance, outdoor_temperature):
|
||||
inverter_efficiency = inverter_efficiency
|
||||
stc_power = float(pv_system.standard_test_condition_maximum_power)
|
||||
stc_irradiance = float(pv_system.standard_test_condition_radiation)
|
||||
cell_temperature_coefficient = float(pv_system.cell_temperature_coefficient) / 100 if (
|
||||
pv_system.cell_temperature_coefficient is not None) else None
|
||||
stc_t_cell = float(pv_system.standard_test_condition_cell_temperature)
|
||||
nominal_condition_irradiance = float(pv_system.nominal_radiation)
|
||||
nominal_condition_cell_temperature = float(pv_system.nominal_cell_temperature)
|
||||
nominal_t_out = float(pv_system.nominal_ambient_temperature)
|
||||
g_i = irradiance
|
||||
t_out = outdoor_temperature
|
||||
t_cell = []
|
||||
pv_output = []
|
||||
for i in range(len(g_i)):
|
||||
t_cell.append((t_out[i] + (g_i[i] / nominal_condition_irradiance) *
|
||||
(nominal_condition_cell_temperature - nominal_t_out)))
|
||||
pv_output.append((inverter_efficiency * number_of_panels * (stc_power * (g_i[i] / stc_irradiance) *
|
||||
(1 - cell_temperature_coefficient *
|
||||
(t_cell[i] - stc_t_cell)))))
|
||||
return pv_output
|
||||
|
||||
def rooftop_sizing(self, roof):
|
||||
pv_system = self.pv_system
|
||||
if self.module_model_name is not None:
|
||||
self.system_assignation()
|
||||
# System Sizing
|
||||
module_width = float(pv_system.width)
|
||||
module_height = float(pv_system.height)
|
||||
roof_area = roof.perimeter_area
|
||||
pv_module_area = module_width * module_height
|
||||
available_roof = (self.roof_percentage_coverage * roof_area)
|
||||
# Inter-Row Spacing
|
||||
winter_solstice = self.solar_angles[(self.solar_angles['AST'].dt.month == 12) &
|
||||
(self.solar_angles['AST'].dt.day == 21) &
|
||||
(self.solar_angles['AST'].dt.hour == 12)]
|
||||
solar_altitude = winter_solstice['solar altitude'].values[0]
|
||||
solar_azimuth = winter_solstice['solar azimuth'].values[0]
|
||||
distance = ((module_height * math.sin(math.radians(self.tilt_angle)) * abs(
|
||||
math.cos(math.radians(solar_azimuth)))) / math.tan(math.radians(solar_altitude)))
|
||||
distance = float(format(distance, '.2f'))
|
||||
# Calculation of the number of panels
|
||||
space_dimension = math.sqrt(available_roof)
|
||||
space_dimension = float(format(space_dimension, '.2f'))
|
||||
panels_per_row = math.ceil(space_dimension / module_width)
|
||||
number_of_rows = math.ceil(space_dimension / distance)
|
||||
total_number_of_panels = panels_per_row * number_of_rows
|
||||
total_pv_area = total_number_of_panels * pv_module_area
|
||||
roof.installed_solar_collector_area = total_pv_area
|
||||
return panels_per_row, number_of_rows
|
||||
|
||||
def system_assignation(self):
|
||||
generation_units_catalogue = EnergySystemsCatalogFactory(self.system_catalogue_handler).catalog
|
||||
catalog_pv_generation_equipments = [component for component in
|
||||
generation_units_catalogue.entries('generation_equipments') if
|
||||
component.system_type == 'photovoltaic']
|
||||
selected_pv_module = None
|
||||
for pv_module in catalog_pv_generation_equipments:
|
||||
if self.module_model_name == pv_module.model_name:
|
||||
selected_pv_module = pv_module
|
||||
if selected_pv_module is None:
|
||||
raise ValueError("No PV module with the provided model name exists in the catalogue")
|
||||
for energy_system in self.building.energy_systems:
|
||||
for idx, generation_system in enumerate(energy_system.generation_systems):
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
new_system = selected_pv_module
|
||||
# Preserve attributes that exist in the original but not in the new system
|
||||
for attr in dir(generation_system):
|
||||
# Skip private attributes and methods
|
||||
if not attr.startswith('__') and not callable(getattr(generation_system, attr)):
|
||||
if not hasattr(new_system, attr):
|
||||
setattr(new_system, attr, getattr(generation_system, attr))
|
||||
# Replace the old generation system with the new one
|
||||
energy_system.generation_systems[idx] = new_system
|
||||
|
||||
def grid_tied_system(self):
|
||||
if self.electricity_demand is not None:
|
||||
electricity_demand = self.electricity_demand
|
||||
else:
|
||||
electricity_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
|
||||
HourlyElectricityDemand(self.building).calculate()]
|
||||
rooftops_pv_output = [0] * len(electricity_demand)
|
||||
facades_pv_output = [0] * len(electricity_demand)
|
||||
rooftop_number_of_panels = 0
|
||||
if 'rooftop' in self.pv_installation_type.lower():
|
||||
for roof in self.building.roofs:
|
||||
if roof.perimeter_area > 40:
|
||||
np, ns = self.rooftop_sizing(roof)
|
||||
single_roof_number_of_panels = np * ns
|
||||
rooftop_number_of_panels += single_roof_number_of_panels
|
||||
if self.simulation_model_type == 'explicit':
|
||||
single_roof_pv_output = self.explicit_model(pv_system=self.pv_system,
|
||||
inverter_efficiency=self.inverter_efficiency,
|
||||
number_of_panels=single_roof_number_of_panels,
|
||||
irradiance=roof.global_irradiance_tilted[cte.HOUR],
|
||||
outdoor_temperature=self.building.external_temperature[
|
||||
cte.HOUR])
|
||||
for i in range(len(rooftops_pv_output)):
|
||||
rooftops_pv_output[i] += single_roof_pv_output[i]
|
||||
total_hourly_pv_output = [rooftops_pv_output[i] + facades_pv_output[i] for i in range(8760)]
|
||||
imported_electricity = [0] * 8760
|
||||
exported_electricity = [0] * 8760
|
||||
for i in range(len(electricity_demand)):
|
||||
transfer = total_hourly_pv_output[i] - electricity_demand[i]
|
||||
if transfer > 0:
|
||||
exported_electricity[i] = transfer
|
||||
else:
|
||||
imported_electricity[i] = abs(transfer)
|
||||
|
||||
results = {'building_name': self.building.name,
|
||||
'total_floor_area_m2': self.building.thermal_zones_from_internal_zones[0].total_floor_area,
|
||||
'roof_area_m2': self.building.roofs[0].perimeter_area, 'rooftop_panels': rooftop_number_of_panels,
|
||||
'rooftop_panels_area_m2': self.building.roofs[0].installed_solar_collector_area,
|
||||
'yearly_rooftop_ghi_kW/m2': self.building.roofs[0].global_irradiance[cte.YEAR][0] / 1000,
|
||||
f'yearly_rooftop_tilted_radiation_{self.tilt_angle}_degree_kW/m2':
|
||||
self.building.roofs[0].global_irradiance_tilted[cte.YEAR][0] / 1000,
|
||||
'yearly_rooftop_pv_production_kWh': sum(rooftops_pv_output) / 1000,
|
||||
'yearly_total_pv_production_kWh': sum(total_hourly_pv_output) / 1000,
|
||||
'specific_pv_production_kWh/kWp': sum(rooftops_pv_output) / (
|
||||
float(self.pv_system.standard_test_condition_maximum_power) * rooftop_number_of_panels),
|
||||
'hourly_rooftop_poa_irradiance_W/m2': self.building.roofs[0].global_irradiance_tilted[cte.HOUR],
|
||||
'hourly_rooftop_pv_output_W': rooftops_pv_output, 'T_out': self.building.external_temperature[cte.HOUR],
|
||||
'building_electricity_demand_W': electricity_demand,
|
||||
'total_hourly_pv_system_output_W': total_hourly_pv_output, 'import_from_grid_W': imported_electricity,
|
||||
'export_to_grid_W': exported_electricity}
|
||||
return results
|
||||
|
||||
def enrich(self):
|
||||
system_archetype_name = self.building.energy_systems_archetype_name
|
||||
archetype_name = '_'.join(system_archetype_name.lower().split())
|
||||
if 'grid_tied' in archetype_name:
|
||||
self.results = self.grid_tied_system()
|
||||
hourly_pv_output = self.results['total_hourly_pv_system_output_W']
|
||||
self.building.pv_generation[cte.HOUR] = hourly_pv_output
|
||||
self.building.pv_generation[cte.MONTH] = MonthlyValues.get_total_month(hourly_pv_output)
|
||||
self.building.pv_generation[cte.YEAR] = [sum(hourly_pv_output)]
|
||||
if self.csv_output:
|
||||
self.save_to_csv(self.results, self.output_path, f'{self.building.name}_pv_system_analysis.csv')
|
||||
|
||||
@staticmethod
|
||||
def save_to_csv(data, output_path, filename='rooftop_system_results.csv'):
|
||||
# Separate keys based on whether their values are single values or lists
|
||||
single_value_keys = [key for key, value in data.items() if not isinstance(value, list)]
|
||||
list_value_keys = [key for key, value in data.items() if isinstance(value, list)]
|
||||
|
||||
# Check if all lists have the same length
|
||||
list_lengths = [len(data[key]) for key in list_value_keys]
|
||||
if not all(length == list_lengths[0] for length in list_lengths):
|
||||
raise ValueError("All lists in the dictionary must have the same length")
|
||||
|
||||
# Get the length of list values (assuming all lists are of the same length, e.g., 8760 for hourly data)
|
||||
num_rows = list_lengths[0] if list_value_keys else 1
|
||||
|
||||
# Open the CSV file for writing
|
||||
with open(output_path / filename, mode='w', newline='') as csv_file:
|
||||
writer = csv.writer(csv_file)
|
||||
# Write single-value data as a header section
|
||||
for key in single_value_keys:
|
||||
writer.writerow([key, data[key]])
|
||||
# Write an empty row for separation
|
||||
writer.writerow([])
|
||||
# Write the header for the list values
|
||||
writer.writerow(list_value_keys)
|
||||
# Write each row for the lists
|
||||
for i in range(num_rows):
|
||||
row = [data[key][i] for key in list_value_keys]
|
||||
writer.writerow(row)
|
222
pv_assessment/solar_calculator.py
Normal file
222
pv_assessment/solar_calculator.py
Normal file
@ -0,0 +1,222 @@
|
||||
import math
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
import hub.helpers.constants as cte
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class SolarCalculator:
|
||||
def __init__(self, city, tilt_angle, surface_azimuth_angle, standard_meridian=-75,
|
||||
solar_constant=1366.1, maximum_clearness_index=1, min_cos_zenith=0.065, maximum_zenith_angle=87):
|
||||
"""
|
||||
A class to calculate the solar angles and solar irradiance on a tilted surface in the City
|
||||
:param city: An object from the City class -> City
|
||||
:param tilt_angle: tilt angle of surface -> float
|
||||
:param surface_azimuth_angle: The orientation of the surface. 0 is North -> float
|
||||
:param standard_meridian: A standard meridian is the meridian whose mean solar time is the basis of the time of day
|
||||
observed in a time zone -> float
|
||||
:param solar_constant: The amount of energy received by a given area one astronomical unit away from the Sun. It is
|
||||
constant and must not be changed
|
||||
:param maximum_clearness_index: This is used to calculate the diffuse fraction of the solar irradiance -> float
|
||||
:param min_cos_zenith: This is needed to avoid unrealistic values in tilted irradiance calculations -> float
|
||||
:param maximum_zenith_angle: This is needed to avoid negative values in tilted irradiance calculations -> float
|
||||
"""
|
||||
self.city = city
|
||||
self.location_latitude = city.latitude
|
||||
self.location_longitude = city.longitude
|
||||
self.location_latitude_rad = math.radians(self.location_latitude)
|
||||
self.surface_azimuth_angle = surface_azimuth_angle
|
||||
self.surface_azimuth_rad = math.radians(surface_azimuth_angle)
|
||||
self.tilt_angle = tilt_angle
|
||||
self.tilt_angle_rad = math.radians(tilt_angle)
|
||||
self.standard_meridian = standard_meridian
|
||||
self.longitude_correction = (self.location_longitude - standard_meridian) * 4
|
||||
self.solar_constant = solar_constant
|
||||
self.maximum_clearness_index = maximum_clearness_index
|
||||
self.min_cos_zenith = min_cos_zenith
|
||||
self.maximum_zenith_angle = maximum_zenith_angle
|
||||
timezone_offset = int(-standard_meridian / 15)
|
||||
self.timezone = f'Etc/GMT{"+" if timezone_offset < 0 else "-"}{abs(timezone_offset)}'
|
||||
self.eot = []
|
||||
self.ast = []
|
||||
self.hour_angles = []
|
||||
self.declinations = []
|
||||
self.solar_altitudes = []
|
||||
self.solar_azimuths = []
|
||||
self.zeniths = []
|
||||
self.incidents = []
|
||||
self.i_on = []
|
||||
self.i_oh = []
|
||||
self.times = pd.date_range(start='2023-01-01', end='2023-12-31 23:00', freq='h', tz=self.timezone)
|
||||
self.solar_angles = pd.DataFrame(index=self.times)
|
||||
self.day_of_year = self.solar_angles.index.dayofyear
|
||||
|
||||
def solar_time(self, datetime_val, day_of_year):
|
||||
b = (day_of_year - 81) * 2 * math.pi / 364
|
||||
eot = 9.87 * math.sin(2 * b) - 7.53 * math.cos(b) - 1.5 * math.sin(b)
|
||||
self.eot.append(eot)
|
||||
|
||||
# Calculate Local Solar Time (LST)
|
||||
lst_hour = datetime_val.hour
|
||||
lst_minute = datetime_val.minute
|
||||
lst_second = datetime_val.second
|
||||
lst = lst_hour + lst_minute / 60 + lst_second / 3600
|
||||
|
||||
# Calculate Apparent Solar Time (AST) in decimal hours
|
||||
ast_decimal = lst + eot / 60 + self.longitude_correction / 60
|
||||
ast_hours = int(ast_decimal) % 24 # Adjust hours to fit within 0–23 range
|
||||
ast_minutes = round((ast_decimal - ast_hours) * 60)
|
||||
|
||||
# Ensure ast_minutes is within valid range
|
||||
if ast_minutes == 60:
|
||||
ast_hours += 1
|
||||
ast_minutes = 0
|
||||
elif ast_minutes < 0:
|
||||
ast_minutes = 0
|
||||
ast_time = datetime(year=datetime_val.year, month=datetime_val.month, day=datetime_val.day,
|
||||
hour=ast_hours, minute=ast_minutes)
|
||||
self.ast.append(ast_time)
|
||||
return ast_time
|
||||
|
||||
def declination_angle(self, day_of_year):
|
||||
declination = 23.45 * math.sin(math.radians(360 / 365 * (284 + day_of_year)))
|
||||
declination_radian = math.radians(declination)
|
||||
self.declinations.append(declination)
|
||||
return declination_radian
|
||||
|
||||
def hour_angle(self, ast_time):
|
||||
hour_angle = ((ast_time.hour * 60 + ast_time.minute) - 720) / 4
|
||||
hour_angle_radian = math.radians(hour_angle)
|
||||
self.hour_angles.append(hour_angle)
|
||||
return hour_angle_radian
|
||||
|
||||
def solar_altitude(self, declination_radian, hour_angle_radian):
|
||||
solar_altitude_radians = math.asin(math.cos(self.location_latitude_rad) * math.cos(declination_radian) *
|
||||
math.cos(hour_angle_radian) + math.sin(self.location_latitude_rad) *
|
||||
math.sin(declination_radian))
|
||||
solar_altitude = math.degrees(solar_altitude_radians)
|
||||
self.solar_altitudes.append(solar_altitude)
|
||||
return solar_altitude_radians
|
||||
|
||||
def zenith(self, solar_altitude_radians):
|
||||
solar_altitude = math.degrees(solar_altitude_radians)
|
||||
zenith_degree = 90 - solar_altitude
|
||||
zenith_radian = math.radians(zenith_degree)
|
||||
self.zeniths.append(zenith_degree)
|
||||
return zenith_radian
|
||||
|
||||
def solar_azimuth_analytical(self, hourangle, declination, zenith):
|
||||
numer = (math.cos(zenith) * math.sin(self.location_latitude_rad) - math.sin(declination))
|
||||
denom = (math.sin(zenith) * math.cos(self.location_latitude_rad))
|
||||
if math.isclose(denom, 0.0, abs_tol=1e-8):
|
||||
cos_azi = 1.0
|
||||
else:
|
||||
cos_azi = numer / denom
|
||||
|
||||
cos_azi = max(-1.0, min(1.0, cos_azi))
|
||||
|
||||
sign_ha = math.copysign(1, hourangle)
|
||||
solar_azimuth_radians = sign_ha * math.acos(cos_azi) + math.pi
|
||||
solar_azimuth_degrees = math.degrees(solar_azimuth_radians)
|
||||
self.solar_azimuths.append(solar_azimuth_degrees)
|
||||
return solar_azimuth_radians
|
||||
|
||||
def incident_angle(self, solar_altitude_radians, solar_azimuth_radians):
|
||||
incident_radian = math.acos(math.cos(solar_altitude_radians) *
|
||||
math.cos(abs(solar_azimuth_radians - self.surface_azimuth_rad)) *
|
||||
math.sin(self.tilt_angle_rad) + math.sin(solar_altitude_radians) *
|
||||
math.cos(self.tilt_angle_rad))
|
||||
incident_angle_degrees = math.degrees(incident_radian)
|
||||
self.incidents.append(incident_angle_degrees)
|
||||
return incident_radian
|
||||
|
||||
def dni_extra(self, day_of_year, zenith_radian):
|
||||
i_on = self.solar_constant * (1 + 0.033 * math.cos(math.radians(360 * day_of_year / 365)))
|
||||
i_oh = i_on * max(math.cos(zenith_radian), self.min_cos_zenith)
|
||||
self.i_on.append(i_on)
|
||||
self.i_oh.append(i_oh)
|
||||
return i_on, i_oh
|
||||
|
||||
def clearness_index(self, ghi, i_oh):
|
||||
k_t = ghi / i_oh
|
||||
k_t = max(0, k_t)
|
||||
k_t = min(self.maximum_clearness_index, k_t)
|
||||
return k_t
|
||||
|
||||
def diffuse_fraction(self, k_t, zenith):
|
||||
if k_t <= 0.22:
|
||||
fraction_diffuse = 1 - 0.09 * k_t
|
||||
elif k_t <= 0.8:
|
||||
fraction_diffuse = (0.9511 - 0.1604 * k_t + 4.388 * k_t ** 2 - 16.638 * k_t ** 3 + 12.336 * k_t ** 4)
|
||||
else:
|
||||
fraction_diffuse = 0.165
|
||||
if zenith > self.maximum_zenith_angle:
|
||||
fraction_diffuse = 1
|
||||
return fraction_diffuse
|
||||
|
||||
def radiation_components_horizontal(self, ghi, fraction_diffuse, zenith):
|
||||
diffuse_horizontal = ghi * fraction_diffuse
|
||||
dni = (ghi - diffuse_horizontal) / math.cos(math.radians(zenith))
|
||||
if zenith > self.maximum_zenith_angle or dni < 0:
|
||||
dni = 0
|
||||
return diffuse_horizontal, dni
|
||||
|
||||
def radiation_components_tilted(self, diffuse_horizontal, dni, incident_angle):
|
||||
beam_tilted = dni * math.cos(math.radians(incident_angle))
|
||||
beam_tilted = max(beam_tilted, 0)
|
||||
diffuse_tilted = diffuse_horizontal * ((1 + math.cos(math.radians(self.tilt_angle))) / 2)
|
||||
total_radiation_tilted = beam_tilted + diffuse_tilted
|
||||
return total_radiation_tilted
|
||||
|
||||
def solar_angles_calculator(self, csv_output=False):
|
||||
for i in range(len(self.times)):
|
||||
datetime_val = self.times[i]
|
||||
day_of_year = self.day_of_year[i]
|
||||
declination_radians = self.declination_angle(day_of_year)
|
||||
ast_time = self.solar_time(datetime_val, day_of_year)
|
||||
hour_angle_radians = self.hour_angle(ast_time)
|
||||
solar_altitude_radians = self.solar_altitude(declination_radians, hour_angle_radians)
|
||||
zenith_radians = self.zenith(solar_altitude_radians)
|
||||
solar_azimuth_radians = self.solar_azimuth_analytical(hour_angle_radians, declination_radians, zenith_radians)
|
||||
self.incident_angle(solar_altitude_radians, solar_azimuth_radians)
|
||||
self.dni_extra(day_of_year=day_of_year, zenith_radian=zenith_radians)
|
||||
self.solar_angles['DateTime'] = self.times
|
||||
self.solar_angles['AST'] = self.ast
|
||||
self.solar_angles['hour angle'] = self.hour_angles
|
||||
self.solar_angles['eot'] = self.eot
|
||||
self.solar_angles['declination angle'] = self.declinations
|
||||
self.solar_angles['solar altitude'] = self.solar_altitudes
|
||||
self.solar_angles['zenith'] = self.zeniths
|
||||
self.solar_angles['solar azimuth'] = self.solar_azimuths
|
||||
self.solar_angles['incident angle'] = self.incidents
|
||||
self.solar_angles['extraterrestrial normal radiation (Wh/m2)'] = self.i_on
|
||||
self.solar_angles['extraterrestrial radiation on horizontal (Wh/m2)'] = self.i_oh
|
||||
if csv_output:
|
||||
self.solar_angles.to_csv('solar_angles_new.csv')
|
||||
|
||||
def tilted_irradiance_calculator(self):
|
||||
if self.solar_angles.empty:
|
||||
self.solar_angles_calculator()
|
||||
for building in self.city.buildings:
|
||||
for roof in building.roofs:
|
||||
hourly_tilted_irradiance = []
|
||||
roof_ghi = roof.global_irradiance[cte.HOUR]
|
||||
for i in range(len(roof_ghi)):
|
||||
k_t = self.clearness_index(ghi=roof_ghi[i], i_oh=self.i_oh[i])
|
||||
fraction_diffuse = self.diffuse_fraction(k_t, self.zeniths[i])
|
||||
diffuse_horizontal, dni = self.radiation_components_horizontal(ghi=roof_ghi[i],
|
||||
fraction_diffuse=fraction_diffuse,
|
||||
zenith=self.zeniths[i])
|
||||
hourly_tilted_irradiance.append(int(self.radiation_components_tilted(diffuse_horizontal=diffuse_horizontal,
|
||||
dni=dni,
|
||||
incident_angle=self.incidents[i])))
|
||||
|
||||
roof.global_irradiance_tilted[cte.HOUR] = hourly_tilted_irradiance
|
||||
roof.global_irradiance_tilted[cte.MONTH] = (MonthlyValues.get_total_month(
|
||||
roof.global_irradiance_tilted[cte.HOUR]))
|
||||
roof.global_irradiance_tilted[cte.YEAR] = [sum(roof.global_irradiance_tilted[cte.MONTH])]
|
||||
|
||||
|
||||
|
||||
|
||||
|
129
random_assignation.py
Normal file
129
random_assignation.py
Normal file
@ -0,0 +1,129 @@
|
||||
"""
|
||||
This project aims to assign energy systems archetype names to Montreal buildings.
|
||||
The random assignation is based on statistical information extracted from different sources, being:
|
||||
- For residential buildings:
|
||||
- SHEU 2015: https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/menus/sheu/2015/tables.cfm
|
||||
- For non-residential buildings:
|
||||
- Montreal dataportal: https://dataportalforcities.org/north-america/canada/quebec/montreal
|
||||
- https://www.eia.gov/consumption/commercial/data/2018/
|
||||
"""
|
||||
import json
|
||||
import random
|
||||
|
||||
from hub.city_model_structure.building import Building
|
||||
|
||||
energy_systems_format = 'montreal_future'
|
||||
|
||||
# parameters:
|
||||
residential_systems_percentage = {
|
||||
'Central Hydronic Air and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and Grid Tied PV': 100,
|
||||
'Central Hydronic Air and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW and Grid Tied PV': 0,
|
||||
'Central Hydronic Ground and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and Grid Tied PV': 0,
|
||||
'Central Hydronic Ground and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW '
|
||||
'and Grid Tied PV': 0,
|
||||
'Central Hydronic Water and Gas Source Heating System with Unitary Split Cooling and Air Source HP DHW and Grid Tied PV': 0,
|
||||
'Central Hydronic Water and Electricity Source Heating System with Unitary Split Cooling and Air Source HP DHW '
|
||||
'and Grid Tied PV': 0,
|
||||
'Central Hydronic Air and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Central Hydronic Air and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Central Hydronic Ground and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Central Hydronic Ground and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Central Hydronic Water and Gas Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Central Hydronic Water and Electricity Source Heating System with Unitary Split and Air Source HP DHW': 0,
|
||||
'Grid Tied PV System': 0,
|
||||
'system 1 gas': 0,
|
||||
'system 1 gas grid tied pv': 0,
|
||||
'system 1 electricity': 0,
|
||||
'system 1 electricity grid tied pv': 0,
|
||||
'system 2 gas': 0,
|
||||
'system 2 gas grid tied pv': 0,
|
||||
'system 2 electricity': 0,
|
||||
'system 2 electricity grid tied pv': 0,
|
||||
'system 3 and 4 gas': 0,
|
||||
'system 3 and 4 gas grid tied pv': 0,
|
||||
'system 3 and 4 electricity': 0,
|
||||
'system 3 and 4 electricity grid tied pv': 0,
|
||||
'system 6 gas': 0,
|
||||
'system 6 gas grid tied pv': 0,
|
||||
'system 6 electricity': 0,
|
||||
'system 6 electricity grid tied pv': 0,
|
||||
'system 8 gas': 0,
|
||||
'system 8 gas grid tied pv': 0,
|
||||
'system 8 electricity': 0,
|
||||
'system 8 electricity grid tied pv': 0,
|
||||
}
|
||||
|
||||
non_residential_systems_percentage = {'system 1 gas': 0,
|
||||
'system 1 electricity': 0,
|
||||
'system 2 gas': 0,
|
||||
'system 2 electricity': 0,
|
||||
'system 3 and 4 gas': 39,
|
||||
'system 3 and 4 electricity': 36,
|
||||
'system 5 gas': 0,
|
||||
'system 5 electricity': 0,
|
||||
'system 6 gas': 13,
|
||||
'system 6 electricity': 12,
|
||||
'system 8 gas': 0,
|
||||
'system 8 electricity': 0}
|
||||
|
||||
|
||||
def _retrieve_buildings(path, year_of_construction_field=None,
|
||||
function_field=None, function_to_hub=None, aliases_field=None):
|
||||
_buildings = []
|
||||
with open(path, 'r', encoding='utf8') as json_file:
|
||||
_geojson = json.loads(json_file.read())
|
||||
for feature in _geojson['features']:
|
||||
_building = {}
|
||||
year_of_construction = None
|
||||
if year_of_construction_field is not None:
|
||||
year_of_construction = int(feature['properties'][year_of_construction_field])
|
||||
function = None
|
||||
if function_field is not None:
|
||||
function = feature['properties'][function_field]
|
||||
if function_to_hub is not None:
|
||||
# use the transformation dictionary to retrieve the proper function
|
||||
if function in function_to_hub:
|
||||
function = function_to_hub[function]
|
||||
building_name = ''
|
||||
building_aliases = []
|
||||
if 'id' in feature:
|
||||
building_name = feature['id']
|
||||
if aliases_field is not None:
|
||||
for alias_field in aliases_field:
|
||||
building_aliases.append(feature['properties'][alias_field])
|
||||
_building['year_of_construction'] = year_of_construction
|
||||
_building['function'] = function
|
||||
_building['building_name'] = building_name
|
||||
_building['building_aliases'] = building_aliases
|
||||
_buildings.append(_building)
|
||||
return _buildings
|
||||
|
||||
|
||||
def call_random(_buildings: [Building], _systems_percentage):
|
||||
_buildings_with_systems = []
|
||||
_systems_distribution = []
|
||||
_selected_buildings = list(range(0, len(_buildings)))
|
||||
random.shuffle(_selected_buildings)
|
||||
total = 0
|
||||
maximum = 0
|
||||
add_to = 0
|
||||
for _system in _systems_percentage:
|
||||
if _systems_percentage[_system] > 0:
|
||||
number_of_buildings = round(_systems_percentage[_system] / 100 * len(_selected_buildings))
|
||||
_systems_distribution.append({'system': _system, 'number': _systems_percentage[_system],
|
||||
'number_of_buildings': number_of_buildings})
|
||||
if number_of_buildings > maximum:
|
||||
maximum = number_of_buildings
|
||||
add_to = len(_systems_distribution) - 1
|
||||
total += number_of_buildings
|
||||
missing = 0
|
||||
if total != len(_selected_buildings):
|
||||
missing = len(_selected_buildings) - total
|
||||
if missing != 0:
|
||||
_systems_distribution[add_to]['number_of_buildings'] += missing
|
||||
_position = 0
|
||||
for case in _systems_distribution:
|
||||
for i in range(0, case['number_of_buildings']):
|
||||
_buildings[_selected_buildings[_position]].energy_systems_archetype_name = case['system']
|
||||
_position += 1
|
||||
return _buildings
|
Loading…
Reference in New Issue
Block a user