Compare commits

...

6 Commits

4 changed files with 316 additions and 46 deletions

249
input_files/eilat.geojson Normal file
View File

@ -0,0 +1,249 @@
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"id": 1,
"properties": {
"heightmax": 9,
"ANNEE_CONS": 1978,
"CODE_UTILI": "residential"
},
"geometry": {
"coordinates": [
[
[
34.95217088371581,
29.56694805860026
],
[
34.95262396587913,
29.566952667742285
],
[
34.95261999147337,
29.567024109421467
],
[
34.952169558914704,
29.567019500282157
],
[
34.95217088371581,
29.56694805860026
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 3,
"properties": {
"heightmax": 16,
"ANNEE_CONS": 2012,
"CODE_UTILI": "dormitory"
},
"geometry": {
"coordinates": [
[
[
34.95176644317411,
29.56827388702702
],
[
34.95176550020565,
29.568180388329026
],
[
34.95179850408434,
29.568180388329026
],
[
34.95179850408434,
29.5681303582886
],
[
34.95176644317411,
29.5681303582886
],
[
34.95176644317411,
29.568038499789708
],
[
34.951874884488376,
29.568038499789708
],
[
34.951874884488376,
29.568058183760357
],
[
34.95192391882168,
29.568058183760357
],
[
34.951922032885705,
29.56804178045124
],
[
34.95205216246262,
29.568042600617147
],
[
34.952051219494166,
29.568129538124154
],
[
34.95201821561636,
29.5681303582886
],
[
34.95201821561636,
29.568176287507143
],
[
34.95204839059062,
29.568176287507143
],
[
34.95205027652662,
29.56827552735433
],
[
34.95195503676348,
29.568274707190284
],
[
34.95195597973188,
29.56825830391628
],
[
34.951849424353696,
29.56825830391628
],
[
34.951849424353696,
29.568274707190284
],
[
34.95176644317411,
29.56827388702702
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 2,
"properties": {
"heightmax": 24,
"ANNEE_CONS": 2002,
"CODE_UTILI": "Hotel employ"
},
"geometry": {
"coordinates": [
[
[
34.94972280674813,
29.566224752287738
],
[
34.94974316291999,
29.56597561012454
],
[
34.94989147217407,
29.565980668855033
],
[
34.94987402402688,
29.566233605043536
],
[
34.94972280674813,
29.566224752287738
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 4,
"properties": {
"heightmax": 24,
"ANNEE_CONS": 2002,
"CODE_UTILI": "Hotel employ"
},
"geometry": {
"coordinates": [
[
[
34.9492572120038,
29.565899295950373
],
[
34.949411568175805,
29.565906093785898
],
[
34.94939398329561,
29.56615761339161
],
[
34.94924158099852,
29.566149116117728
],
[
34.9492572120038,
29.565899295950373
]
]
],
"type": "Polygon"
}
},
{
"type": "Feature",
"id": 5,
"properties": {
"heightmax": 9,
"ANNEE_CONS": 1978,
"CODE_UTILI": "residential"
},
"geometry": {
"coordinates": [
[
[
34.95213398400861,
29.567197394967593
],
[
34.95258172690612,
29.56720586098278
],
[
34.95258172690612,
29.56727217807996
],
[
34.952132361751325,
29.56726935607685
],
[
34.95213398400861,
29.567197394967593
]
]
],
"type": "Polygon"
}
}
]
}

17
main.py
View File

@ -3,7 +3,6 @@ from pathlib import Path
from hub.imports.geometry_factory import GeometryFactory from hub.imports.geometry_factory import GeometryFactory
from hub.imports.construction_factory import ConstructionFactory from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.helpers.dictionaries import Dictionaries from hub.helpers.dictionaries import Dictionaries
from hub.imports.energy_systems_factory import EnergySystemsFactory from hub.imports.energy_systems_factory import EnergySystemsFactory
import hub.helpers.constants as cte import hub.helpers.constants as cte
@ -13,14 +12,11 @@ from sra_engine import SraEngine
try: try:
file_path = (Path(__file__).parent / 'input_files' / '195_v1.geojson') file_path = (Path(__file__).parent / 'input_files' / 'eilat.geojson')
climate_reference_city = 'Montreal' climate_reference_city = 'Montreal'
weather_format = 'epw' construction_format = 'eilat'
construction_format = 'nrcan' usage_format = 'eilat'
usage_format = 'nrcan'
energy_systems_format = 'montreal_custom' energy_systems_format = 'montreal_custom'
attic_heated_case = 0
basement_heated_case = 1
out_path = (Path(__file__).parent / 'output_files') out_path = (Path(__file__).parent / 'output_files')
tmp_folder = (Path(__file__).parent / 'tmp') tmp_folder = (Path(__file__).parent / 'tmp')
@ -31,12 +27,9 @@ try:
height_field='heightmax', height_field='heightmax',
year_of_construction_field='ANNEE_CONS', year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI', function_field='CODE_UTILI',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city function_to_hub=Dictionaries().eilat_function_to_hub_function).city
city.climate_reference_city = climate_reference_city
city.climate_file = (tmp_folder / f'{climate_reference_city}.cli').resolve()
print(f'city created from {file_path}') print(f'city created from {file_path}')
WeatherFactory(weather_format, city).enrich()
print('enrich weather... done')
ConstructionFactory(construction_format, city).enrich() ConstructionFactory(construction_format, city).enrich()
print('enrich constructions... done') print('enrich constructions... done')
UsageFactory(usage_format, city).enrich() UsageFactory(usage_format, city).enrich()

44
peak_load_class.py Normal file
View File

@ -0,0 +1,44 @@
from pathlib import Path
import pandas as pd
import hub.helpers.constants as cte
def Peak_load (building):
array = [None] * 12
heating = 0
cooling = 0
for system in building.energy_systems:
for demand_type in system.demand_types:
if demand_type == cte.HEATING:
heating = 1
if demand_type == cte.COOLING:
cooling = 1
if cte.MONTH in building.heating_peak_load.keys() and cte.MONTH in building.cooling_peak_load.keys():
peak_lighting = 0
peak_appliances = 0
for thermal_zone in building.internal_zones[0].thermal_zones:
lighting = thermal_zone.lighting
for schedule in lighting.schedules:
for value in schedule.values:
if value * lighting.density * thermal_zone.total_floor_area > peak_lighting:
peak_lighting = value * lighting.density * thermal_zone.total_floor_area
appliances = thermal_zone.appliances
for schedule in appliances.schedules:
for value in schedule.values:
if value * appliances.density * thermal_zone.total_floor_area > peak_appliances:
peak_appliances = value * appliances.density * thermal_zone.total_floor_area
monthly_electricity_peak = [0.9 * peak_lighting + 0.7 * peak_appliances] * 12
conditioning_peak = []
for i, value in enumerate(building.heating_peak_load[cte.MONTH]):
if cooling * building.cooling_peak_load[cte.MONTH][i] > heating * value:
conditioning_peak.append(cooling * building.cooling_peak_load[cte.MONTH][i])
else:
conditioning_peak.append(heating * value)
monthly_electricity_peak[i] += 0.8 * conditioning_peak[i]
electricity_peak_load_results = pd.DataFrame(monthly_electricity_peak
, columns=[f'{building.name} electricity peak load W'])
else:
electricity_peak_load_results = pd.DataFrame(array, columns=[f'{building.name} electricity peak load W'])
return electricity_peak_load_results

View File

@ -151,8 +151,8 @@ class Results:
with open(full_path_metadata, 'w') as metadata_file: with open(full_path_metadata, 'w') as metadata_file:
metadata_file.write(file) metadata_file.write(file)
def outputsforgraph(self): def outputsforgraph(self):
file = 'city name: ' + self._city.name + '\n' outputs_energy =pd.DataFrame()
array = [None] * 12 array = [None] * 12
for building in self._city.buildings: for building in self._city.buildings:
if cte.MONTH in building.heating_demand.keys(): if cte.MONTH in building.heating_demand.keys():
@ -262,36 +262,20 @@ class Results:
columns=[ columns=[
f'{building.name} electrical consumption for distribution Wh']) f'{building.name} electrical consumption for distribution Wh'])
if print_results is None: listgraph = [lighting_results.values.sum(),
print_results = heating_results appliances_results.values.sum(),
else: heating_consumption_results.values.sum(),
print_results = pd.concat([print_results, heating_results], axis='columns') cooling_consumption_results.values.sum(),
print_results = pd.concat([print_results, dhw_consumption_results.values.sum(),
cooling_results, extra_electrical_consumption.values.sum()
lighting_results, ]
appliances_results, outputs_energy[f'building {building.name}'] = listgraph
dhw_results, outputs_energy.index = ['Lighting consumption', 'Appliances consumption', 'Heating consumption',
heating_consumption_results, 'Cooling consumption', 'DHW consumption', 'Extra electrical consumption']
cooling_consumption_results, total_final_energy = (lighting_results.values.sum() + appliances_results.values.sum() + \
dhw_consumption_results, heating_consumption_results.values.sum() + cooling_consumption_results.values.sum() + \
heating_peak_load_results, dhw_consumption_results.values.sum() + extra_electrical_consumption.values.sum())/1000
cooling_peak_load_results,
electricity_peak_load_results, return outputs_energy, total_final_energy
onsite_electrical_production,
extra_electrical_consumption], axis='columns')
file += '\n'
file += f'name: {building.name}\n'
file += f'year of construction: {building.year_of_construction}\n'
file += f'function: {building.function}\n'
file += f'floor area: {building.floor_area}\n'
if building.average_storey_height is not None and building.eave_height is not None:
file += f'storeys: {int(building.eave_height / building.average_storey_height)}\n'
else:
file += f'storeys: n/a\n'
file += f'volume: {building.volume}\n'
full_path_results = Path(self._path / 'demand.csv').resolve()
print_results.to_csv(full_path_results, na_rep='null')
full_path_metadata = Path(self._path / 'metadata.csv').resolve()
with open(full_path_metadata, 'w') as metadata_file:
metadata_file.write(file)