fix/isolated-nodes-bug-fix #1
|
@ -1,31 +1,36 @@
|
|||
import json
|
||||
import geopandas as gpd
|
||||
import matplotlib.pyplot as plt
|
||||
from shapely.geometry import Polygon, Point, LineString, MultiPoint
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
import networkx as nx
|
||||
from typing import List, Tuple
|
||||
from rtree import index
|
||||
|
||||
|
||||
class DistrictHeatingNetworkCreator:
|
||||
def __init__(self, buildings_file, roads_file):
|
||||
def __init__(self, buildings_file: str, roads_file: str):
|
||||
"""
|
||||
Initialize the class with paths to the buildings and roads data files.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the Shapefile containing road data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
"""
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
|
||||
def run(self):
|
||||
def run(self) -> nx.Graph:
|
||||
"""
|
||||
Main method to execute the district heating network creation process.
|
||||
:return: NetworkX graph with nodes and edges representing the network.
|
||||
"""
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._process_intersections()
|
||||
network_graph = self._create_network_graph()
|
||||
return network_graph
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
self.add_centroids_to_mst() # Add centroids to the MST
|
||||
return self.final_mst
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
|
@ -35,156 +40,211 @@ class DistrictHeatingNetworkCreator:
|
|||
with open(self.buildings_file, 'r') as file:
|
||||
city = json.load(file)
|
||||
|
||||
# Extract centroids and building IDs from building data
|
||||
centroids = []
|
||||
building_ids = [] # List to store building IDs
|
||||
self.centroids = []
|
||||
self.building_ids = []
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
centroids.append(centroid)
|
||||
building_ids.append(building['id']) # Extract building ID
|
||||
|
||||
# Convert centroids to a GeoDataFrame and include building IDs
|
||||
self.centroids_gdf = gpd.GeoDataFrame({
|
||||
'geometry': [Point(centroid.x, centroid.y) for centroid in centroids],
|
||||
'building_id': building_ids # Add building IDs as a column
|
||||
}, crs='EPSG:4326')
|
||||
self.centroids.append(centroid)
|
||||
self.building_ids.append(building['id'])
|
||||
|
||||
# Load road data
|
||||
self.gdf_road = gpd.read_file(self.roads_file)
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
# Ensure centroids are in the same CRS as roads
|
||||
self.centroids_gdf = self.centroids_gdf.to_crs(self.gdf_road.crs)
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
self.lines = [LineString(feature['geometry']['coordinates']) for feature in line_features]
|
||||
self.cleaned_lines = [LineString([line.coords[0], line.coords[-1]]) for line in self.lines]
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
# Process road geometries
|
||||
self.gdf_clean = gpd.GeoDataFrame(
|
||||
{'geometry': [LineString([coord for coord in line.coords]) for line in self.gdf_road.geometry]})
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Create spatial index for roads
|
||||
idx = index.Index()
|
||||
for pos, line in enumerate(self.cleaned_lines):
|
||||
idx.insert(pos, line.bounds)
|
||||
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for pos in idx.nearest(centroid.bounds, 10):
|
||||
road = self.cleaned_lines[pos]
|
||||
distance = road.distance(centroid)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
def find_nearest_point_on_line(point: Point, line: LineString) -> Point:
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
# Find the nearest road line and point for each centroid
|
||||
self.closest_linestrings = []
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids_gdf.geometry:
|
||||
closest_road = min(self.gdf_clean.geometry, key=lambda x: x.distance(centroid))
|
||||
self.closest_linestrings.append(closest_road)
|
||||
nearest_point = closest_road.interpolate(closest_road.project(centroid))
|
||||
self.nearest_points.append(nearest_point)
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
def _process_intersections(self):
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Process intersections and create final geometries.
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
# Create additional GeoDataFrames for points and nearest points
|
||||
self.gdf_pts = gpd.GeoDataFrame(
|
||||
{'geometry': [Point(coord) for line in self.gdf_clean.geometry for coord in line.coords]})
|
||||
self.gdf_pts2 = gpd.GeoDataFrame({'geometry': self.nearest_points})
|
||||
def break_down_roads(closest_roads: List[LineString], nearest_points_list: List[Point]) -> List[LineString]:
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
coords = list(road.coords)
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
# Combine nearest points and road points into one GeoDataFrame
|
||||
self.gdf_pts3 = gpd.GeoDataFrame({'geometry': self.nearest_points + list(self.gdf_pts.geometry)})
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
|
||||
# Identify intersections and create LineStrings based on intersections
|
||||
self.gdf_clean["intersect"] = [
|
||||
[y for y in range(len(self.gdf_pts2)) if self.gdf_pts2.geometry[y].distance(geom) <= 1.0] for geom in
|
||||
self.gdf_clean.geometry]
|
||||
self.gdf_cleaner = self.gdf_clean[self.gdf_clean["intersect"].apply(len).gt(0)].reset_index(drop=True)
|
||||
|
||||
self.test_list = []
|
||||
for idx, row in self.gdf_cleaner.iterrows():
|
||||
for i in range(len(row["intersect"]) + 1):
|
||||
if i == 0:
|
||||
self.test_list.append(
|
||||
LineString([row['geometry'].coords[0], self.gdf_pts3.geometry[row['intersect'][i]]]))
|
||||
elif i < len(row['intersect']):
|
||||
self.test_list.append(LineString(
|
||||
[self.gdf_pts3.geometry[row['intersect'][i - 1]], self.gdf_pts3.geometry[row['intersect'][i]]]))
|
||||
else:
|
||||
self.test_list.append(
|
||||
LineString([self.gdf_pts3.geometry[row['intersect'][i - 1]], row['geometry'].coords[-1]]))
|
||||
|
||||
self.gdf_cleanest = gpd.GeoDataFrame({'geometry': self.test_list})
|
||||
|
||||
points = [coord for geom in self.gdf_cleanest.geometry for coord in geom.coords]
|
||||
gdf_pts_cnt = self.gdf_pts.copy()
|
||||
gdf_pts_cnt["count"] = gdf_pts_cnt.geometry.apply(lambda x: points.count(x.coords[0]))
|
||||
gdf_pts_reset = gdf_pts_cnt[gdf_pts_cnt["count"] > 1].reset_index(drop=True)
|
||||
gdf_pts_drop = gdf_pts_cnt[gdf_pts_cnt["count"] <= 1].reset_index(drop=True)
|
||||
|
||||
# Remove unnecessary geometries from gdf_cleanest
|
||||
for idx, geom in self.gdf_cleanest.iterrows():
|
||||
for coord in geom.geometry.coords:
|
||||
if coord in [pt.coords[0] for pt in gdf_pts_drop.geometry]:
|
||||
self.gdf_cleanest = self.gdf_cleanest.drop(idx)
|
||||
|
||||
self.gdf_cleanest.reset_index(drop=True, inplace=True)
|
||||
|
||||
def _create_network_graph(self):
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the processed geospatial data.
|
||||
:return: A NetworkX graph representing the district heating network.
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
G = nx.Graph()
|
||||
self.G = nx.Graph()
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
self.G.add_edge(coords[i], coords[i + 1], weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
|
||||
# Convert centroids to EPSG:4326 for Google Maps compatibility
|
||||
for idx, row in self.centroids_gdf.iterrows():
|
||||
building_name = f"Building_{idx + 1}"
|
||||
G.add_node((row.geometry.x, row.geometry.y),
|
||||
type='centroid',
|
||||
name=building_name,
|
||||
building_id=row['building_id']) # Add building ID as an attribute
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
def find_paths_between_nearest_points(g: nx.Graph, nearest_points: List[Point]) -> List[Tuple]:
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
for point in self.nearest_points:
|
||||
G.add_node((point.x, point.y), type='nearest_point')
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
|
||||
# Add edges with lengths as weights for the road network
|
||||
for line in self.gdf_cleanest.geometry:
|
||||
length = line.length
|
||||
if isinstance(line.boundary, MultiPoint):
|
||||
# Handle MultiPoint boundary
|
||||
points = list(line.boundary.geoms)
|
||||
for i in range(len(points) - 1):
|
||||
start_point = points[i]
|
||||
end_point = points[i + 1]
|
||||
G.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
|
||||
else:
|
||||
# Handle typical case with two endpoints
|
||||
start_point, end_point = line.boundary
|
||||
G.add_edge((start_point.x, start_point.y), (end_point.x, end_point.y), weight=length)
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections and street nodes with only one connection.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
# Add edges connecting nearest points to their centroids
|
||||
for point, centroid in zip(self.nearest_points, self.centroids_gdf.geometry):
|
||||
distance = point.distance(centroid)
|
||||
G.add_edge((point.x, point.y), (centroid.x, centroid.y), weight=distance)
|
||||
def find_edges_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
edges_to_remove = []
|
||||
for u, v, d in graph.edges(data=True):
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v, d))
|
||||
return edges_to_remove
|
||||
|
||||
return G
|
||||
def find_nodes_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
nodes_to_remove = []
|
||||
for node in graph.nodes():
|
||||
if graph.degree(node) == 0:
|
||||
nodes_to_remove.append(node)
|
||||
return nodes_to_remove
|
||||
|
||||
def plot_network_graph(self, network_graph):
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps = [list(self.final_mst.edges(data=True))]
|
||||
|
||||
while edges_to_remove or find_nodes_to_remove(self.final_mst):
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
nodes_to_remove = find_nodes_to_remove(self.final_mst)
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def find_single_connection_street_nodes(graph: nx.Graph) -> List[Tuple]:
|
||||
single_connection_street_nodes = []
|
||||
for node in graph.nodes():
|
||||
if node not in nearest_points_tuples and graph.degree(node) == 1:
|
||||
single_connection_street_nodes.append(node)
|
||||
return single_connection_street_nodes
|
||||
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
|
||||
while single_connection_street_nodes:
|
||||
for node in single_connection_street_nodes:
|
||||
neighbors = list(self.final_mst.neighbors(node))
|
||||
self.final_mst.remove_node(node)
|
||||
for neighbor in neighbors:
|
||||
if self.final_mst.degree(neighbor) == 0:
|
||||
self.final_mst.remove_node(neighbor)
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def add_centroids_to_mst(self):
|
||||
"""
|
||||
Add centroids to the final MST graph and connect them to their associated node on the graph.
|
||||
"""
|
||||
for centroid in self.centroids:
|
||||
centroid_tuple = (centroid.x, centroid.y)
|
||||
self.final_mst.add_node(centroid_tuple, type='centroid')
|
||||
nearest_point = None
|
||||
min_distance = float('inf')
|
||||
for node in self.final_mst.nodes():
|
||||
if self.final_mst.nodes[node].get('type') != 'centroid':
|
||||
node_point = Point(node)
|
||||
distance = centroid.distance(node_point)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
nearest_point = node
|
||||
|
||||
if nearest_point:
|
||||
self.final_mst.add_edge(centroid_tuple, nearest_point, weight=min_distance)
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
|
||||
:param network_graph: The NetworkX graph to be plotted.
|
||||
"""
|
||||
plt.figure(figsize=(12, 12))
|
||||
pos = {node: (node[0], node[1]) for node in network_graph.nodes()}
|
||||
|
||||
# Draw nodes and edges
|
||||
nx.draw_networkx_nodes(network_graph, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(network_graph, pos, edge_color='gray')
|
||||
|
||||
# Create a dictionary for node labels for centroids only
|
||||
node_labels = {node: data['name'] for node, data in network_graph.nodes(data=True) if
|
||||
data.get('type') == 'centroid'}
|
||||
|
||||
# Adjust node label positions to reduce overlap
|
||||
label_pos = {node: (coords[0], coords[1] + 0.03) for node, coords in pos.items()} # Shift labels up
|
||||
|
||||
# Draw node labels for centroids
|
||||
nx.draw_networkx_labels(network_graph, label_pos, labels=node_labels, font_size=8, verticalalignment='bottom')
|
||||
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: (node[0], node[1]) for node in self.final_mst.nodes()}
|
||||
nx.draw_networkx_nodes(self.final_mst, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.final_mst, pos, edge_color='gray')
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
plt.show()
|
||||
|
|
56
Scripts/road_processor.py
Normal file
56
Scripts/road_processor.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
from pathlib import Path
|
||||
from shapely.geometry import Polygon, Point, shape
|
||||
import json
|
||||
|
||||
|
||||
def road_processor(x, y, diff):
|
||||
"""
|
||||
Processes a .JSON file to find roads that have at least one node within a specified polygon.
|
||||
|
||||
Parameters:
|
||||
x (float): The x-coordinate of the center of the selection box.
|
||||
y (float): The y-coordinate of the center of the selection box.
|
||||
diff (float): The half-width of the selection box.
|
||||
|
||||
Returns:
|
||||
str: The file path of the output GeoJSON file containing the selected roads.
|
||||
"""
|
||||
diff += 2 * diff
|
||||
# Define the selection polygon
|
||||
selection_box = Polygon([
|
||||
[x + diff, y - diff],
|
||||
[x - diff, y - diff],
|
||||
[x - diff, y + diff],
|
||||
[x + diff, y + diff]
|
||||
])
|
||||
|
||||
# Define input and output file paths
|
||||
geojson_file = Path("./input_files/roads.json").resolve()
|
||||
output_file = Path('./input_files/output_roads.geojson').resolve()
|
||||
|
||||
# Initialize a list to store the roads in the region
|
||||
roads_in_region = []
|
||||
|
||||
# Read the GeoJSON file
|
||||
with open(geojson_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
# Check each road feature
|
||||
for feature in line_features:
|
||||
road_shape = shape(feature['geometry'])
|
||||
# Check if any node of the road is inside the selection box
|
||||
if any(selection_box.contains(Point(coord)) for coord in road_shape.coords):
|
||||
roads_in_region.append(feature)
|
||||
|
||||
# Create a new GeoJSON structure with the selected roads
|
||||
output_geojson = {
|
||||
"type": "FeatureCollection",
|
||||
"features": roads_in_region
|
||||
}
|
||||
|
||||
# Write the selected roads to the output file
|
||||
with open(output_file, 'w') as outfile:
|
||||
json.dump(output_geojson, outfile)
|
||||
|
||||
return output_file
|
File diff suppressed because it is too large
Load Diff
1
input_files/output_roads.geojson
Normal file
1
input_files/output_roads.geojson
Normal file
File diff suppressed because one or more lines are too long
1585013
input_files/roads.json
Normal file
1585013
input_files/roads.json
Normal file
File diff suppressed because it is too large
Load Diff
|
@ -1 +0,0 @@
|
|||
UTF-8
|
Binary file not shown.
|
@ -1 +0,0 @@
|
|||
PROJCS["NAD_1983_MTM_8",GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",304800.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-73.5],PARAMETER["Scale_Factor",0.9999],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]
|
Binary file not shown.
Binary file not shown.
26
main.py
26
main.py
|
@ -1,13 +1,19 @@
|
|||
from DistrictHeatingNetworkCreator import DistrictHeatingNetworkCreator
|
||||
# building_file = "./input_files/buildings.geojson"
|
||||
# road_file = "./input_files/roads/geobase_mtl.shp"
|
||||
# Initialize the class
|
||||
network_creator = DistrictHeatingNetworkCreator(
|
||||
'./input_files/buildings.geojson',
|
||||
'./input_files/roads/geobase_mtl.shp'
|
||||
)
|
||||
from Scripts.road_processor import road_processor
|
||||
from pathlib import Path
|
||||
import time
|
||||
location = [45.51663850312751, -73.59854314961274]
|
||||
start_time = time.perf_counter()
|
||||
roads_file = road_processor(location[1], location[0], 0.001)
|
||||
|
||||
# Create the network graph
|
||||
network_graph = network_creator.run()
|
||||
buildings_file = Path('./input_files/buildings.geojson').resolve()
|
||||
|
||||
network_creator.plot_network_graph(network_graph)
|
||||
dhn_creator = DistrictHeatingNetworkCreator(buildings_file, roads_file)
|
||||
network_graph = dhn_creator.run()
|
||||
end_time = time.perf_counter()
|
||||
|
||||
elapsed_time = end_time - start_time
|
||||
|
||||
print(f"The simulation took {elapsed_time:.4f} seconds to run.")
|
||||
|
||||
dhn_creator.plot_network_graph()
|
||||
|
|
659
test_some_stuff.ipynb
Normal file
659
test_some_stuff.ipynb
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user