this class has been extracted from the monthly_energy_balance project and a complete project to manage the interaction with sra has been created (this one)
This commit is contained in:
parent
a4d3fbaab9
commit
b585e6cac2
4
cache/.gitignore
vendored
Normal file
4
cache/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
# Ignore everything in this directory
|
||||
*
|
||||
# Except this file
|
||||
!.gitignore
|
37
helper/helper.py
Normal file
37
helper/helper.py
Normal file
@ -0,0 +1,37 @@
|
||||
"""
|
||||
Helper class for SRA
|
||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||
Copyright © 2020 Project Author Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import helpers.constants as cte
|
||||
|
||||
|
||||
class Helper:
|
||||
def __init__(self):
|
||||
self._month_hour = None
|
||||
|
||||
@property
|
||||
def month_hour(self):
|
||||
"""
|
||||
returns a DataFrame that has x values of the month number (January = 1, February = 2...),
|
||||
being x the number of hours of the corresponding month
|
||||
:return: DataFrame(int)
|
||||
"""
|
||||
array = []
|
||||
for i in range(0, 12):
|
||||
total_hours = cte.days_of_month[i] * 24
|
||||
array = np.concatenate((array, np.full(total_hours, i + 1)))
|
||||
self._month_hour = pd.DataFrame(array, columns=['month'])
|
||||
return self._month_hour
|
||||
|
||||
def get_mean_values(self, values):
|
||||
out = None
|
||||
if values is not None:
|
||||
if 'month' not in values.columns:
|
||||
values = pd.concat([self.month_hour, pd.DataFrame(values)], axis=1)
|
||||
out = values.groupby('month', as_index=False).mean()
|
||||
del out['month']
|
||||
return out
|
157
simplified_radiosity_algorithm.py
Normal file
157
simplified_radiosity_algorithm.py
Normal file
@ -0,0 +1,157 @@
|
||||
"""
|
||||
SimplifiedRadiosityAlgorithm manage the interaction with the third party software CitySim_SRA
|
||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||
Copyright © 2020 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
||||
"""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
import subprocess
|
||||
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
|
||||
|
||||
from exports.exports_factory import ExportsFactory
|
||||
from imports.weather_factory import WeatherFactory
|
||||
from helper.helper import Helper as mv
|
||||
|
||||
|
||||
class SimplifiedRadiosityAlgorithm:
|
||||
"""
|
||||
SimplifiedRadiosityAlgorithm factory class
|
||||
"""
|
||||
# todo: define executable as configurable parameter
|
||||
# _executable = 'citysim_sra' # for linux
|
||||
_executable = 'shortwave_integer' # for windows
|
||||
|
||||
def __init__(self, city, sra_working_path, weather_file_name):
|
||||
self._city = city
|
||||
self._sra_working_path = sra_working_path
|
||||
self._weather_file_name = weather_file_name
|
||||
self._sra_in_file_name = self._city.name + '_sra.xml'
|
||||
self._sra_out_file_name = self._city.name + '_sra_SW.out'
|
||||
|
||||
self._tmp_path = (sra_working_path / 'tmp').resolve()
|
||||
Path(self._tmp_path).mkdir(parents=True, exist_ok=True)
|
||||
# Ensure tmp file is empty
|
||||
for child in self._tmp_path.glob('*'):
|
||||
if child.is_file():
|
||||
child.unlink()
|
||||
|
||||
self._cache_path = (sra_working_path / 'cache').resolve()
|
||||
Path(self._cache_path).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
self._results = None
|
||||
self._radiation = []
|
||||
|
||||
def call_sra(self, keep_files=False):
|
||||
"""
|
||||
creates required input files and calls the software
|
||||
"""
|
||||
self._create_cli_file()
|
||||
ExportsFactory('sra', self._city, self._tmp_path).export()
|
||||
try:
|
||||
completed = subprocess.run([self._executable, str(Path(self._tmp_path / self._sra_in_file_name).resolve())])
|
||||
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
|
||||
raise Exception(error)
|
||||
file = (self._tmp_path / self._sra_out_file_name).resolve()
|
||||
new_path = (self._cache_path / self._sra_out_file_name).resolve()
|
||||
try:
|
||||
shutil.move(str(file), str(new_path))
|
||||
except Exception:
|
||||
raise Exception('No SRA output file found')
|
||||
if not keep_files:
|
||||
os.remove(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())
|
||||
return completed
|
||||
|
||||
@property
|
||||
def results(self):
|
||||
if self._results is None:
|
||||
try:
|
||||
path = (self._cache_path / self._sra_out_file_name).resolve()
|
||||
self._results = pd.read_csv(path, sep='\s+', header=0)
|
||||
except Exception:
|
||||
raise Exception('No SRA output file found')
|
||||
return self._results
|
||||
|
||||
@property
|
||||
def radiation(self) -> []:
|
||||
if len(self._radiation) == 0:
|
||||
id_building = ''
|
||||
header_building = []
|
||||
for column in self.results.columns.values:
|
||||
if id_building != column.split(':')[1]:
|
||||
id_building = column.split(':')[1]
|
||||
if len(header_building) > 0:
|
||||
self._radiation.append(pd.concat([mv().month_hour, self.results[header_building]],
|
||||
axis=1))
|
||||
header_building = [column]
|
||||
else:
|
||||
header_building.append(column)
|
||||
self._radiation.append(pd.concat([mv().month_hour, self.results[header_building]], axis=1))
|
||||
return self._radiation
|
||||
|
||||
def set_irradiance_surfaces(self, city, mode=0, building_name=None):
|
||||
"""
|
||||
saves in building surfaces the correspondent irradiance at different time-scales depending on the mode
|
||||
if building is None, it saves all buildings' surfaces in file, if building is specified, it saves only that
|
||||
specific building values
|
||||
mode = 0, set only monthly values
|
||||
mode = 1, set only hourly values
|
||||
mode = 2, set both
|
||||
:parameter city: city
|
||||
:parameter mode: str (time-scale definition)
|
||||
:parameter building_name: str
|
||||
:return: none
|
||||
"""
|
||||
for radiation in self.radiation:
|
||||
city_object_name = radiation.columns.values.tolist()[1].split(':')[1]
|
||||
if building_name is not None:
|
||||
if city_object_name != building_name:
|
||||
# todo: in case there is a specific building name defined, then assign values only to that specific building
|
||||
continue
|
||||
|
||||
building = city.city_object(city_object_name)
|
||||
for column in radiation.columns.values:
|
||||
if column == 'month':
|
||||
continue
|
||||
header_id = column
|
||||
surface_id = header_id.split(':')[2]
|
||||
surface = building.surface_by_id(surface_id)
|
||||
new_value = pd.DataFrame(radiation[[header_id]].to_numpy(), columns=['sra'])
|
||||
if mode == 0 or mode == 2:
|
||||
month_new_value = mv().get_mean_values(new_value)
|
||||
if 'month' not in surface.global_irradiance:
|
||||
surface.global_irradiance['month'] = month_new_value
|
||||
else:
|
||||
pd.concat([surface.global_irradiance['month'], month_new_value], axis=1)
|
||||
if mode == 1 or mode == 2:
|
||||
if 'hour' not in surface.global_irradiance:
|
||||
surface.global_irradiance['hour'] = new_value
|
||||
else:
|
||||
pd.concat([surface.global_irradiance['hour'], new_value], axis=1)
|
||||
|
||||
def _create_cli_file(self):
|
||||
file = self._city.climate_file
|
||||
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
||||
WeatherFactory('epw', self._city, file_name=self._weather_file_name).enrich()
|
||||
content = self._city.name + '\n'
|
||||
content += str(self._city.latitude) + ',' + str(self._city.longitude) + ',0.0,' + str(self._city.time_zone) + '\n'
|
||||
content += '\ndm m h G_Dh G_Bn\n'
|
||||
total_days = 0
|
||||
for month in range(1, 13):
|
||||
if month > 1:
|
||||
total_days += days_in_month[month - 2]
|
||||
for day in range(1, days_in_month[month-1]+1):
|
||||
for hour in range(1, 25):
|
||||
if month == 1:
|
||||
i = 24 * (day-1) + hour - 1
|
||||
else:
|
||||
i = (total_days+day-1)*24 + hour - 1
|
||||
representative_building = self._city.buildings[0]
|
||||
content += str(day) + ' ' + str(month) + ' ' + str(hour) + ' ' \
|
||||
+ str(representative_building.global_horizontal['hour'].epw[i]) + ' ' \
|
||||
+ str(representative_building.beam['hour'].epw[i]) + '\n'
|
||||
with open(file, "w") as file:
|
||||
file.write(content)
|
||||
return
|
4
tmp/.gitignore
vendored
Normal file
4
tmp/.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
# Ignore everything in this directory
|
||||
*
|
||||
# Except this file
|
||||
!.gitignore
|
Loading…
Reference in New Issue
Block a user