simplified_radiosity_algorithm/simplified_radiosity_algorithm.py

158 lines
6.1 KiB
Python

"""
SimplifiedRadiosityAlgorithm manage the interaction with the third party software CitySim_SRA
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2020 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
"""
import os
import shutil
from pathlib import Path
import pandas as pd
import subprocess
from subprocess import SubprocessError, TimeoutExpired, CalledProcessError
from exports.exports_factory import ExportsFactory
from imports.weather_factory import WeatherFactory
from helper.helper import Helper as mv
class SimplifiedRadiosityAlgorithm:
"""
SimplifiedRadiosityAlgorithm factory class
"""
# todo: define executable as configurable parameter
# _executable = 'citysim_sra' # for linux
_executable = 'shortwave_integer' # for windows
def __init__(self, city, sra_working_path, weather_file_name):
self._city = city
self._sra_working_path = sra_working_path
self._weather_file_name = weather_file_name
self._sra_in_file_name = self._city.name + '_sra.xml'
self._sra_out_file_name = self._city.name + '_sra_SW.out'
self._tmp_path = (sra_working_path / 'tmp').resolve()
Path(self._tmp_path).mkdir(parents=True, exist_ok=True)
# Ensure tmp file is empty
for child in self._tmp_path.glob('*'):
if child.is_file():
child.unlink()
self._cache_path = (sra_working_path / 'cache').resolve()
Path(self._cache_path).mkdir(parents=True, exist_ok=True)
self._results = None
self._radiation = []
def call_sra(self, keep_files=False):
"""
creates required input files and calls the software
"""
self._create_cli_file()
ExportsFactory('sra', self._city, self._tmp_path).export()
try:
completed = subprocess.run([self._executable, str(Path(self._tmp_path / self._sra_in_file_name).resolve())])
except (SubprocessError, TimeoutExpired, CalledProcessError) as error:
raise Exception(error)
file = (self._tmp_path / self._sra_out_file_name).resolve()
new_path = (self._cache_path / self._sra_out_file_name).resolve()
try:
shutil.move(str(file), str(new_path))
except Exception:
raise Exception('No SRA output file found')
if not keep_files:
os.remove(Path(self._tmp_path / f'{self._city.name}_sra.xml').resolve())
return completed
@property
def results(self):
if self._results is None:
try:
path = (self._cache_path / self._sra_out_file_name).resolve()
self._results = pd.read_csv(path, sep='\s+', header=0)
except Exception:
raise Exception('No SRA output file found')
return self._results
@property
def radiation(self) -> []:
if len(self._radiation) == 0:
id_building = ''
header_building = []
for column in self.results.columns.values:
if id_building != column.split(':')[1]:
id_building = column.split(':')[1]
if len(header_building) > 0:
self._radiation.append(pd.concat([mv().month_hour, self.results[header_building]],
axis=1))
header_building = [column]
else:
header_building.append(column)
self._radiation.append(pd.concat([mv().month_hour, self.results[header_building]], axis=1))
return self._radiation
def set_irradiance_surfaces(self, city, mode=0, building_name=None):
"""
saves in building surfaces the correspondent irradiance at different time-scales depending on the mode
if building is None, it saves all buildings' surfaces in file, if building is specified, it saves only that
specific building values
mode = 0, set only monthly values
mode = 1, set only hourly values
mode = 2, set both
:parameter city: city
:parameter mode: str (time-scale definition)
:parameter building_name: str
:return: none
"""
for radiation in self.radiation:
city_object_name = radiation.columns.values.tolist()[1].split(':')[1]
if building_name is not None:
if city_object_name != building_name:
# todo: in case there is a specific building name defined, then assign values only to that specific building
continue
building = city.city_object(city_object_name)
for column in radiation.columns.values:
if column == 'month':
continue
header_id = column
surface_id = header_id.split(':')[2]
surface = building.surface_by_id(surface_id)
new_value = pd.DataFrame(radiation[[header_id]].to_numpy(), columns=['sra'])
if mode == 0 or mode == 2:
month_new_value = mv().get_mean_values(new_value)
if 'month' not in surface.global_irradiance:
surface.global_irradiance['month'] = month_new_value
else:
pd.concat([surface.global_irradiance['month'], month_new_value], axis=1)
if mode == 1 or mode == 2:
if 'hour' not in surface.global_irradiance:
surface.global_irradiance['hour'] = new_value
else:
pd.concat([surface.global_irradiance['hour'], new_value], axis=1)
def _create_cli_file(self):
file = self._city.climate_file
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
WeatherFactory('epw', self._city, file_name=self._weather_file_name).enrich()
content = self._city.name + '\n'
content += str(self._city.latitude) + ',' + str(self._city.longitude) + ',0.0,' + str(self._city.time_zone) + '\n'
content += '\ndm m h G_Dh G_Bn\n'
total_days = 0
for month in range(1, 13):
if month > 1:
total_days += days_in_month[month - 2]
for day in range(1, days_in_month[month-1]+1):
for hour in range(1, 25):
if month == 1:
i = 24 * (day-1) + hour - 1
else:
i = (total_days+day-1)*24 + hour - 1
representative_building = self._city.buildings[0]
content += str(day) + ' ' + str(month) + ' ' + str(hour) + ' ' \
+ str(representative_building.global_horizontal['hour'].epw[i]) + ' ' \
+ str(representative_building.beam['hour'].epw[i]) + '\n'
with open(file, "w") as file:
file.write(content)
return