2022-11-02 17:28:51 -04:00
|
|
|
"""
|
|
|
|
LifeCycleCosts calculates the life cycle costs of one building
|
|
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
|
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
2023-05-30 15:08:11 -04:00
|
|
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
2022-11-02 17:28:51 -04:00
|
|
|
"""
|
2023-04-26 16:26:06 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
import math
|
2023-05-30 15:08:11 -04:00
|
|
|
|
2023-05-01 16:38:45 -04:00
|
|
|
import pandas as pd
|
2022-11-02 17:28:51 -04:00
|
|
|
|
2023-04-27 10:20:14 -04:00
|
|
|
import hub.helpers.constants as cte
|
|
|
|
|
2023-05-02 10:49:53 -04:00
|
|
|
|
2022-11-02 17:28:51 -04:00
|
|
|
class LifeCycleCosts:
|
2023-05-30 15:08:11 -04:00
|
|
|
|
|
|
|
CURRENT_STATUS = 0
|
|
|
|
SKIN_RETROFIT = 1
|
|
|
|
SYSTEM_RETROFIT_AND_PV = 2
|
|
|
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
|
|
|
|
2023-05-29 08:06:58 -04:00
|
|
|
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
2023-05-30 14:42:49 -04:00
|
|
|
electricity_price_index, gas_price_index, discount_rate,
|
|
|
|
retrofitting_scenario, fuel_type):
|
2023-04-25 11:49:17 -04:00
|
|
|
self._building = building
|
2022-11-02 17:28:51 -04:00
|
|
|
self._number_of_years = number_of_years
|
|
|
|
self._consumer_price_index = consumer_price_index
|
2023-05-29 08:06:58 -04:00
|
|
|
self._electricity_peak_index = electricity_peak_index
|
|
|
|
self._electricity_price_index = electricity_price_index
|
|
|
|
self._gas_price_index = gas_price_index
|
2022-11-02 17:28:51 -04:00
|
|
|
self._discount_rate = discount_rate
|
2023-04-26 16:26:06 -04:00
|
|
|
self._archetype = archetype
|
2023-04-25 09:22:44 -04:00
|
|
|
self._end_of_life_cost = 0
|
|
|
|
self._capital_costs_at_year_0 = 0
|
|
|
|
self._items = 0
|
|
|
|
self._fuels = 0
|
|
|
|
self._concepts = 0
|
|
|
|
self._retrofitting_scenario = retrofitting_scenario
|
2023-04-27 10:20:14 -04:00
|
|
|
self._total_floor_area = 0
|
2023-05-30 11:15:33 -04:00
|
|
|
self._fuel_type = fuel_type
|
2023-04-27 10:20:14 -04:00
|
|
|
for internal_zone in building.internal_zones:
|
2023-05-30 14:42:49 -04:00
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
|
|
self._total_floor_area += thermal_zone.total_floor_area
|
2023-04-27 10:20:14 -04:00
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
# todo: revise if it works
|
2023-05-27 09:32:42 -04:00
|
|
|
rng = range(number_of_years)
|
2023-05-02 10:49:53 -04:00
|
|
|
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
|
2023-05-30 14:42:49 -04:00
|
|
|
'B3010_opaque_roof', 'B10_superstructure',
|
|
|
|
'D301010_photovoltaic_system',
|
|
|
|
'D3020_heat_generating_systems',
|
|
|
|
'D3030_cooling_generation_systems',
|
|
|
|
'D3040_distribution_systems',
|
|
|
|
'D3080_other_hvac_ahu',
|
|
|
|
'D5020_lighting_and_branch_wiring'],
|
2023-05-29 08:06:58 -04:00
|
|
|
dtype='float')
|
|
|
|
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
|
|
|
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
|
|
|
'Fixed_costs_electricity_monthly',
|
2023-05-30 14:42:49 -04:00
|
|
|
'Variable_costs_electricity', 'Fixed_costs_gas',
|
2023-05-29 22:10:43 -04:00
|
|
|
'Variable_costs_gas'],
|
2023-05-29 08:06:58 -04:00
|
|
|
dtype='float')
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
|
2023-05-29 22:10:43 -04:00
|
|
|
'PV_maintenance'], dtype='float')
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
def calculate_capital_costs(self):
|
2023-04-25 11:49:17 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
|
|
|
|
2023-04-25 11:49:17 -04:00
|
|
|
surface_opaque = 0
|
|
|
|
surface_transparent = 0
|
2023-04-25 18:33:09 -04:00
|
|
|
surface_roof = 0
|
|
|
|
surface_ground = 0
|
2023-04-27 10:20:14 -04:00
|
|
|
total_floor_area = self._total_floor_area
|
2023-04-25 11:49:17 -04:00
|
|
|
|
|
|
|
for internal_zone in building.internal_zones:
|
2023-05-30 14:42:49 -04:00
|
|
|
for thermal_zone in internal_zone.thermal_zones:
|
|
|
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
|
|
|
if thermal_boundary.type == 'Ground':
|
|
|
|
surface_ground += thermal_boundary.opaque_area
|
|
|
|
elif thermal_boundary.type == 'Roof':
|
|
|
|
surface_roof += thermal_boundary.opaque_area
|
|
|
|
elif thermal_boundary.type == 'Wall':
|
|
|
|
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
|
|
|
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
chapters = archetype.capital_cost
|
2023-04-27 10:20:14 -04:00
|
|
|
|
2023-05-31 11:23:23 -04:00
|
|
|
peak_heating = building.heating_peak_load[cte.YEAR].values[0]/1000
|
|
|
|
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]/1000
|
2023-05-30 15:08:11 -04:00
|
|
|
# todo: change area pv when the variable exists
|
|
|
|
roof_area = 0
|
|
|
|
for roof in building.roofs:
|
|
|
|
roof_area += roof.solid_polygon.area
|
|
|
|
surface_pv = roof_area * 0.5
|
|
|
|
|
|
|
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'B_Shell'] = 0
|
|
|
|
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
|
|
|
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
|
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_capital_costs.fillna(0, inplace=True)
|
2023-05-30 15:08:11 -04:00
|
|
|
if self._retrofitting_scenario in (self.SKIN_RETROFIT, self.SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
2023-04-25 11:49:17 -04:00
|
|
|
chapter = chapters.chapter('B_shell')
|
|
|
|
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
|
|
|
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
2023-04-25 18:33:09 -04:00
|
|
|
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
|
|
|
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
2023-05-30 14:42:49 -04:00
|
|
|
capital_cost_skin = capital_cost_opaque + capital_cost_transparent + capital_cost_roof + capital_cost_ground
|
2023-05-30 15:08:11 -04:00
|
|
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque
|
|
|
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = capital_cost_transparent
|
|
|
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof
|
|
|
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = capital_cost_ground
|
|
|
|
self._yearly_capital_costs.loc[0, 'B_Shell'] = capital_cost_skin
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-05-31 10:49:17 -04:00
|
|
|
if self._retrofitting_scenario in (self.SYSTEM_RETROFIT_AND_PV, self.SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
2023-04-25 18:33:09 -04:00
|
|
|
chapter = chapters.chapter('D_services')
|
2023-05-27 09:32:42 -04:00
|
|
|
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
|
|
|
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
|
2023-05-30 15:08:11 -04:00
|
|
|
capital_cost_heating_equipment = (
|
|
|
|
peak_heating * chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
|
|
|
)
|
|
|
|
capital_cost_cooling_equipment = (
|
|
|
|
peak_cooling * chapter.item('D3030_cooling_generation_systems').initial_investment[0]
|
|
|
|
)
|
|
|
|
capital_cost_distribution_equipment = (
|
|
|
|
peak_cooling * chapter.item('D3040_distribution_systems').initial_investment[0]
|
|
|
|
)
|
2023-04-27 10:20:14 -04:00
|
|
|
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
|
2023-05-29 22:10:43 -04:00
|
|
|
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
2023-05-30 15:08:11 -04:00
|
|
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], = capital_cost_heating_equipment
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = capital_cost_cooling_equipment
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = capital_cost_distribution_equipment
|
|
|
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = capital_cost_other_hvac_ahu
|
|
|
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = capital_cost_lighting
|
2023-04-25 21:00:19 -04:00
|
|
|
|
2023-05-29 22:10:43 -04:00
|
|
|
for year in range(1, self._number_of_years):
|
2023-04-25 21:00:19 -04:00
|
|
|
chapter = chapters.chapter('D_services')
|
2023-05-31 10:38:16 -04:00
|
|
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-04-25 21:00:19 -04:00
|
|
|
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
2023-04-27 10:20:14 -04:00
|
|
|
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
|
|
|
|
* costs_increase
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-04-25 21:00:19 -04:00
|
|
|
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
2023-04-27 10:20:14 -04:00
|
|
|
reposition_cost_cooling_equipment = peak_cooling \
|
|
|
|
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
|
|
|
|
* costs_increase
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-04-25 21:00:19 -04:00
|
|
|
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
2023-04-27 10:20:14 -04:00
|
|
|
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-04-25 21:00:19 -04:00
|
|
|
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
2023-04-26 16:26:06 -04:00
|
|
|
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
|
|
|
* costs_increase
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
2023-05-27 09:32:42 -04:00
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
2023-05-29 08:06:58 -04:00
|
|
|
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
2023-05-29 22:10:43 -04:00
|
|
|
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
|
2023-05-30 14:42:49 -04:00
|
|
|
* chapter.item(
|
|
|
|
'D301010_photovoltaic_system').reposition[0] * costs_increase
|
2023-05-29 08:06:58 -04:00
|
|
|
return self._yearly_capital_costs
|
2023-04-25 11:49:17 -04:00
|
|
|
|
2023-04-25 18:33:09 -04:00
|
|
|
def calculate_end_of_life_costs(self):
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-04-27 10:20:14 -04:00
|
|
|
total_floor_area = self._total_floor_area
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
price_increase = 0
|
|
|
|
for year in range(1, self._number_of_years + 1):
|
2023-05-31 10:38:16 -04:00
|
|
|
price_increase = math.pow(1 + self._consumer_price_index, year)
|
2023-05-29 08:06:58 -04:00
|
|
|
if year == self._number_of_years:
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_end_of_life_costs.at[
|
|
|
|
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
|
|
|
|
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
2023-05-29 22:10:43 -04:00
|
|
|
return self._yearly_end_of_life_costs
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
def calculate_total_operational_costs(self):
|
2023-04-25 18:33:09 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-04-27 10:20:14 -04:00
|
|
|
total_floor_area = self._total_floor_area
|
2023-05-30 11:15:33 -04:00
|
|
|
factor_residential = total_floor_area / 80
|
2023-05-30 14:42:49 -04:00
|
|
|
# todo: split the heating between fuels
|
2023-05-30 11:15:33 -04:00
|
|
|
fixed_gas_cost_year_0 = 0
|
|
|
|
variable_gas_cost_year_0 = 0
|
|
|
|
electricity_heating = 0
|
|
|
|
domestic_hot_water_electricity = 0
|
|
|
|
if self._fuel_type == 1:
|
2023-05-31 10:38:16 -04:00
|
|
|
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
|
2023-05-31 10:54:38 -04:00
|
|
|
variable_gas_cost_year_0 = (
|
|
|
|
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
|
|
|
|
archetype.operational_cost.fuels[1].variable[0]
|
|
|
|
)
|
2023-05-30 11:15:33 -04:00
|
|
|
if self._fuel_type == 0:
|
2023-05-31 10:49:17 -04:00
|
|
|
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
|
2023-05-30 11:15:33 -04:00
|
|
|
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
|
|
|
|
|
2023-05-31 10:49:17 -04:00
|
|
|
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
|
2023-05-30 14:42:49 -04:00
|
|
|
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
|
|
|
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
2023-05-31 10:54:38 -04:00
|
|
|
electricity_distribution = 0
|
|
|
|
total_electricity_consumption = (
|
|
|
|
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
|
|
|
electricity_plug_loads + electricity_distribution
|
|
|
|
)
|
2023-05-31 10:38:16 -04:00
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
# todo: change when peak electricity demand is coded. Careful with factor residential
|
|
|
|
peak_electricity_demand = 100 # self._peak_electricity_demand
|
2023-05-31 10:38:16 -04:00
|
|
|
print(f'total_electricity_cooling {electricity_cooling}')
|
|
|
|
print(f'total_electricity_lighting {electricity_lighting}')
|
|
|
|
print(f'total_electricity_plug_loads {electricity_plug_loads}')
|
|
|
|
print(f'total_electricity_consumption {total_electricity_consumption}')
|
|
|
|
print(f'price_electricity {archetype.operational_cost.fuels[0].variable[0]}')
|
2023-05-29 08:06:58 -04:00
|
|
|
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
|
|
|
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
|
|
|
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
2023-04-25 18:33:09 -04:00
|
|
|
|
2022-11-02 17:28:51 -04:00
|
|
|
for year in range(1, self._number_of_years + 1):
|
2023-05-31 10:38:16 -04:00
|
|
|
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
|
|
|
price_increase_peak_electricity = math.pow(1 + self._electricity_peak_index, year)
|
|
|
|
price_increase_gas = math.pow(1 + self._gas_price_index, year)
|
2023-05-31 10:54:38 -04:00
|
|
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
|
|
|
|
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
|
|
|
)
|
2023-05-30 14:42:49 -04:00
|
|
|
|
2023-05-31 10:54:38 -04:00
|
|
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
|
|
|
|
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
|
|
|
)
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
|
|
|
|
variable_electricity_cost_year_0 * price_increase_electricity
|
|
|
|
)
|
2023-05-31 10:49:17 -04:00
|
|
|
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
|
|
|
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
|
|
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
|
|
|
)
|
|
|
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
|
|
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
|
|
|
)
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_operational_costs.fillna(0, inplace=True)
|
2023-05-30 08:15:44 -04:00
|
|
|
|
2023-05-29 08:06:58 -04:00
|
|
|
return self._yearly_operational_costs
|
|
|
|
|
|
|
|
def calculate_total_operational_incomes(self):
|
|
|
|
building = self._building
|
|
|
|
archetype = self._archetype
|
2023-05-30 14:42:49 -04:00
|
|
|
if cte.YEAR not in building.onsite_electrical_production:
|
2023-05-29 08:06:58 -04:00
|
|
|
onsite_electricity_production = 0
|
|
|
|
else:
|
2023-05-30 14:42:49 -04:00
|
|
|
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
2023-05-29 08:06:58 -04:00
|
|
|
price_increase_electricity = 0
|
|
|
|
|
|
|
|
for year in range(1, self._number_of_years + 1):
|
|
|
|
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
|
|
|
|
2023-05-31 11:25:09 -04:00
|
|
|
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = onsite_electricity_production * \
|
|
|
|
price_increase_electricity
|
2023-05-29 08:06:58 -04:00
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_operational_incomes.fillna(0, inplace=True)
|
2023-05-29 08:06:58 -04:00
|
|
|
return self._yearly_operational_incomes
|
2022-11-02 17:28:51 -04:00
|
|
|
|
|
|
|
def calculate_total_maintenance_costs(self):
|
2023-04-25 18:33:09 -04:00
|
|
|
building = self._building
|
2023-04-26 16:26:06 -04:00
|
|
|
archetype = self._archetype
|
2023-05-30 14:42:49 -04:00
|
|
|
# todo: change area pv when the variable exists
|
|
|
|
roof_area = 0
|
|
|
|
for roof in building.roofs:
|
|
|
|
roof_area += roof.solid_polygon.area
|
|
|
|
surface_pv = roof_area * 0.5
|
2023-05-29 08:06:58 -04:00
|
|
|
|
2023-05-30 14:42:49 -04:00
|
|
|
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
|
|
|
|
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
|
2023-04-27 10:20:14 -04:00
|
|
|
|
|
|
|
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
|
|
|
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
2023-05-29 08:06:58 -04:00
|
|
|
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
2023-05-30 15:08:11 -04:00
|
|
|
|
2022-11-02 17:28:51 -04:00
|
|
|
for year in range(1, self._number_of_years + 1):
|
2023-05-29 22:10:43 -04:00
|
|
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
2023-05-31 10:49:17 -04:00
|
|
|
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
|
|
|
|
maintenance_heating_0 * costs_increase
|
|
|
|
)
|
|
|
|
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
|
|
|
|
maintenance_cooling_0 * costs_increase
|
|
|
|
)
|
|
|
|
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
|
|
|
|
maintenance_pv_0 * costs_increase
|
|
|
|
)
|
2023-05-30 14:42:49 -04:00
|
|
|
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
2023-05-29 22:10:43 -04:00
|
|
|
return self._yearly_maintenance_costs
|