60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
|
import numpy as np
|
||
|
|
||
|
import plotly.graph_objects as go
|
||
|
import plotly.offline as offline
|
||
|
import matplotlib.pyplot as plt
|
||
|
import plotly.express as px
|
||
|
|
||
|
def printing_results(investmentcosts, life_cycle_results,total_floor_area):
|
||
|
|
||
|
labels = investmentcosts.index
|
||
|
values = investmentcosts['retrofitting_scenario 1']
|
||
|
values2 = investmentcosts['retrofitting_scenario 2']
|
||
|
values3 = investmentcosts['retrofitting_scenario 3']
|
||
|
|
||
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
|
||
|
fig2 = go.Figure(data=[go.Pie(labels=labels, values=values2)])
|
||
|
fig3 = go.Figure(data=[go.Pie(labels=labels, values=values3)])
|
||
|
# Set the layout properties
|
||
|
fig.update_layout(
|
||
|
title='Retrofitting scenario 1',
|
||
|
showlegend=True
|
||
|
)
|
||
|
fig2.update_layout(
|
||
|
title='Retrofitting scenario 1',
|
||
|
showlegend=True
|
||
|
)
|
||
|
fig3.update_layout(
|
||
|
title='Retrofitting scenario 1',
|
||
|
showlegend=True
|
||
|
)
|
||
|
|
||
|
# Display the chart
|
||
|
fig.show()
|
||
|
fig2.show()
|
||
|
fig3.show()
|
||
|
|
||
|
df = life_cycle_results / total_floor_area
|
||
|
|
||
|
# Transpose the DataFrame (swap columns and rows)
|
||
|
df_swapped = df.transpose()
|
||
|
|
||
|
# Reset the index to make the current index a regular column
|
||
|
df_swapped = df_swapped.reset_index()
|
||
|
|
||
|
# Assign new column names
|
||
|
df_swapped.columns = ['Scenarios', 'total_capital_costs_skin',
|
||
|
'total_capital_costs_systems',
|
||
|
'end_of_life_costs',
|
||
|
'total_operational_costs',
|
||
|
'total_maintenance_costs',
|
||
|
'operational_incomes',
|
||
|
'capital_incomes']
|
||
|
|
||
|
df_swapped.index = df_swapped['Scenarios']
|
||
|
df_swapped = df_swapped.drop('Scenarios', axis=1)
|
||
|
print(df_swapped)
|
||
|
fig = px.bar(df_swapped, title='Life Cycle Costs for buildings')
|
||
|
fig.show()
|
||
|
# Display the chart
|
||
|
plt.show()
|