bug correction

This commit is contained in:
Guille Gutierrez 2023-05-30 14:42:49 -04:00
parent fff569b46f
commit 3a7ecb2472
3 changed files with 97 additions and 94 deletions

View File

@ -16,7 +16,7 @@ import hub.helpers.constants as cte
class LifeCycleCosts:
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
electricity_price_index, gas_price_index, discount_rate,
retrofitting_scenario,fuel_type):
retrofitting_scenario, fuel_type):
self._building = building
self._number_of_years = number_of_years
self._consumer_price_index = consumer_price_index
@ -37,23 +37,26 @@ class LifeCycleCosts:
for thermal_zone in internal_zone.thermal_zones:
self._total_floor_area += thermal_zone.total_floor_area
#todo: revise if it works
# todo: revise if it works
rng = range(number_of_years)
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
'B3010_opaque_roof','B10_superstructure',
'D301010_photovoltaic_system','D3020_heat_generating_systems',
'D3030_cooling_generation_systems','D3040_distribution_systems',
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'],
'B3010_opaque_roof', 'B10_superstructure',
'D301010_photovoltaic_system',
'D3020_heat_generating_systems',
'D3030_cooling_generation_systems',
'D3040_distribution_systems',
'D3080_other_hvac_ahu',
'D5020_lighting_and_branch_wiring'],
dtype='float')
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
'Fixed_costs_electricity_monthly',
'Variable_costs_electricity','Fixed_costs_gas',
'Variable_costs_electricity', 'Fixed_costs_gas',
'Variable_costs_gas'],
dtype='float')
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance','Cooling_maintenance',
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
'PV_maintenance'], dtype='float')
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float')
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
def calculate_capital_costs(self):
building = self._building
@ -73,7 +76,7 @@ class LifeCycleCosts:
elif thermal_boundary.type == 'Roof':
surface_roof += thermal_boundary.opaque_area
elif thermal_boundary.type == 'Wall':
surface_opaque += thermal_boundary.opaque_area * (1-thermal_boundary.window_ratio)
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
chapters = archetype.capital_cost
@ -83,8 +86,8 @@ class LifeCycleCosts:
peak_heating = building.heating_peak_load[cte.YEAR].values[0]
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
#todo: put the value of area_pv when it exists
surface_pv = 10 #building.area_pv
# todo: put the value of area_pv when it exists
surface_pv = 10 # building.area_pv
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
self._yearly_capital_costs.loc[0, 'B_Shell'] \
@ -95,21 +98,20 @@ class LifeCycleCosts:
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
= [0, 0, 0, 0, 0]
self._yearly_capital_costs.fillna(0,inplace=True)
self._yearly_capital_costs.fillna(0, inplace=True)
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('B_shell')
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
self._yearly_capital_costs.loc[0,'B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0,'B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
self._yearly_capital_costs.loc[0,'B_Shell']\
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
capital_cost_skin = capital_cost_opaque + capital_cost_transparent + capital_cost_roof + capital_cost_ground
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
self._yearly_capital_costs.loc[0, 'B_Shell'] \
= [capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin]
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
chapter = chapters.chapter('D_services')
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
@ -126,11 +128,11 @@ class LifeCycleCosts:
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
self._yearly_capital_costs.loc[0,'D3020_heat_generating_systems'], \
self._yearly_capital_costs.loc[0,'D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0,'D3040_distribution_systems'], \
self._yearly_capital_costs.loc[0,'D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0,'D5020_lighting_and_branch_wiring']\
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], \
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'], \
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'], \
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
capital_cost_other_hvac_ahu, capital_cost_lighting]
for year in range(1, self._number_of_years):
@ -140,27 +142,28 @@ class LifeCycleCosts:
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year,'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
reposition_cost_cooling_equipment = peak_cooling \
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year,'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
self._yearly_capital_costs.loc[year,'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
* costs_increase
self._yearly_capital_costs.loc[year,'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 :
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
* chapter.item(
'D301010_photovoltaic_system').reposition[0] * costs_increase
return self._yearly_capital_costs
def calculate_end_of_life_costs(self):
@ -171,8 +174,9 @@ class LifeCycleCosts:
for year in range(1, self._number_of_years + 1):
price_increase += math.pow(1 + self._consumer_price_index, year)
if year == self._number_of_years:
self._yearly_end_of_life_costs.at[year,'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
self._yearly_end_of_life_costs.fillna(0,inplace=True)
self._yearly_end_of_life_costs.at[
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
self._yearly_end_of_life_costs.fillna(0, inplace=True)
return self._yearly_end_of_life_costs
def calculate_total_operational_costs(self):
@ -180,14 +184,14 @@ class LifeCycleCosts:
archetype = self._archetype
total_floor_area = self._total_floor_area
factor_residential = total_floor_area / 80
#todo: split the heating between fuels
# todo: split the heating between fuels
fixed_gas_cost_year_0 = 0
variable_gas_cost_year_0 = 0
electricity_heating = 0
domestic_hot_water_electricity = 0
if self._fuel_type == 1:
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly
variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0]+
variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0] +
building.domestic_hot_water_consumption[cte.YEAR][0]) / (1000) * \
archetype.operational_cost.fuels[1].variable[0]
if self._fuel_type == 0:
@ -195,13 +199,13 @@ class LifeCycleCosts:
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000)
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
electricity_distribution = 0 #building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
electricity_distribution = 0 # building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000
total_electricity_consumption = electricity_heating + electricity_cooling + electricity_lighting + \
domestic_hot_water_electricity + electricity_plug_loads + electricity_distribution
#todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 #self._peak_electricity_demand
# todo: change when peak electricity demand is coded. Careful with factor residential
peak_electricity_demand = 100 # self._peak_electricity_demand
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
@ -214,64 +218,65 @@ class LifeCycleCosts:
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year)
price_increase_gas += math.pow(1 + self._gas_price_index, year)
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = peak_electricity_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs.at[year,'Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
price_increase_electricity
self._yearly_operational_costs.at[year,'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
variable_electricity_cost_year_0 * price_increase_electricity
)
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
price_increase_gas
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0* \
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0 * \
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \
price_increase_peak_electricity
self._yearly_operational_costs.fillna(0,inplace=True)
self._yearly_operational_costs.fillna(0, inplace=True)
return self._yearly_operational_costs
def calculate_total_operational_incomes(self):
building = self._building
archetype = self._archetype
if (building.onsite_electrical_production is None):
if cte.YEAR not in building.onsite_electrical_production:
onsite_electricity_production = 0
else:
onsite_electricity_production= 100 #building.onsite_electrical_production[cte.YEAR]/1000
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
price_increase_electricity = 0
for year in range(1, self._number_of_years + 1):
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
self._yearly_operational_incomes.loc[year,'Incomes electricity']=onsite_electricity_production*\
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = onsite_electricity_production * \
price_increase_electricity
self._yearly_operational_incomes.fillna(0,inplace=True)
self._yearly_operational_incomes.fillna(0, inplace=True)
return self._yearly_operational_incomes
def calculate_total_maintenance_costs(self):
building = self._building
archetype = self._archetype
#todo: change area pv when the variable exists
surface_pv = 10 #building.area_pv
# todo: change area pv when the variable exists
roof_area = 0
for roof in building.roofs:
roof_area += roof.solid_polygon.area
surface_pv = roof_area * 0.5
peak_heating = 100#building.heating_peak_load[cte.YEAR][0]
peak_cooling = 100#building.cooling_peak_load[cte.YEAR][0]
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
print(f'peak_heating{peak_heating}')
print(f'maintenance_cost{archetype.operational_cost.maintenance_heating}')
for year in range(1, self._number_of_years + 1):
costs_increase = math.pow(1 + self._consumer_price_index, year)
self._yearly_maintenance_costs.loc[year,'Heating_maintenance'] = maintenance_heating_0 * \
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = maintenance_heating_0 * \
costs_increase
self._yearly_maintenance_costs.loc[year,'Cooling_maintenance'] = maintenance_cooling_0 * \
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = maintenance_cooling_0 * \
costs_increase
self._yearly_maintenance_costs.loc[year,'PV_maintenance'] = maintenance_pv_0 * \
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = maintenance_pv_0 * \
costs_increase
self._yearly_maintenance_costs.fillna(0,inplace=True)
self._yearly_maintenance_costs.fillna(0, inplace=True)
return self._yearly_maintenance_costs

19
main.py
View File

@ -7,25 +7,23 @@ Copyright © 2022 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.mon
import glob
import os
from pathlib import Path
import sys
import pandas as pd
import numpy_financial as npf
from hub.imports.construction_factory import ConstructionFactory
import pandas as pd
from energy_systems_sizing import EnergySystemsSizing
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
import hub.helpers.constants as cte
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
from sra_engine import SraEngine
from hub.imports.energy_systems_factory import EnergySystemsFactory
from energy_systems_sizing import EnergySystemsSizing
from life_cycle_costs import LifeCycleCosts
def _npv_from_list(npv_discount_rate, list_cashflow):
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
return lcc_value
@ -188,6 +186,5 @@ for retrofitting_scenario in retrofitting_scenarios:
print(life_cycle_results)
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
#todo: change if there is more than 1 building
life_cycle_results.to_excel(Path(__file__).parent/'out_files'/f'Results.xlsx', index=True)

1
resources.txt Normal file
View File

@ -0,0 +1 @@
numpy_financial