bug correction
This commit is contained in:
parent
fff569b46f
commit
3a7ecb2472
|
@ -16,7 +16,7 @@ import hub.helpers.constants as cte
|
|||
class LifeCycleCosts:
|
||||
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||
electricity_price_index, gas_price_index, discount_rate,
|
||||
retrofitting_scenario,fuel_type):
|
||||
retrofitting_scenario, fuel_type):
|
||||
self._building = building
|
||||
self._number_of_years = number_of_years
|
||||
self._consumer_price_index = consumer_price_index
|
||||
|
@ -37,23 +37,26 @@ class LifeCycleCosts:
|
|||
for thermal_zone in internal_zone.thermal_zones:
|
||||
self._total_floor_area += thermal_zone.total_floor_area
|
||||
|
||||
#todo: revise if it works
|
||||
# todo: revise if it works
|
||||
rng = range(number_of_years)
|
||||
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
|
||||
'B3010_opaque_roof','B10_superstructure',
|
||||
'D301010_photovoltaic_system','D3020_heat_generating_systems',
|
||||
'D3030_cooling_generation_systems','D3040_distribution_systems',
|
||||
'D3080_other_hvac_ahu','D5020_lighting_and_branch_wiring'],
|
||||
'B3010_opaque_roof', 'B10_superstructure',
|
||||
'D301010_photovoltaic_system',
|
||||
'D3020_heat_generating_systems',
|
||||
'D3030_cooling_generation_systems',
|
||||
'D3040_distribution_systems',
|
||||
'D3080_other_hvac_ahu',
|
||||
'D5020_lighting_and_branch_wiring'],
|
||||
dtype='float')
|
||||
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
||||
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
||||
'Fixed_costs_electricity_monthly',
|
||||
'Variable_costs_electricity','Fixed_costs_gas',
|
||||
'Variable_costs_electricity', 'Fixed_costs_gas',
|
||||
'Variable_costs_gas'],
|
||||
dtype='float')
|
||||
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance','Cooling_maintenance',
|
||||
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
|
||||
'PV_maintenance'], dtype='float')
|
||||
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'],dtype='float')
|
||||
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
|
||||
|
||||
def calculate_capital_costs(self):
|
||||
building = self._building
|
||||
|
@ -73,7 +76,7 @@ class LifeCycleCosts:
|
|||
elif thermal_boundary.type == 'Roof':
|
||||
surface_roof += thermal_boundary.opaque_area
|
||||
elif thermal_boundary.type == 'Wall':
|
||||
surface_opaque += thermal_boundary.opaque_area * (1-thermal_boundary.window_ratio)
|
||||
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
|
||||
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
||||
|
||||
chapters = archetype.capital_cost
|
||||
|
@ -83,8 +86,8 @@ class LifeCycleCosts:
|
|||
|
||||
peak_heating = building.heating_peak_load[cte.YEAR].values[0]
|
||||
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]
|
||||
#todo: put the value of area_pv when it exists
|
||||
surface_pv = 10 #building.area_pv
|
||||
# todo: put the value of area_pv when it exists
|
||||
surface_pv = 10 # building.area_pv
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
|
||||
self._yearly_capital_costs.loc[0, 'B_Shell'] \
|
||||
|
@ -95,21 +98,20 @@ class LifeCycleCosts:
|
|||
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
|
||||
= [0, 0, 0, 0, 0]
|
||||
self._yearly_capital_costs.fillna(0,inplace=True)
|
||||
self._yearly_capital_costs.fillna(0, inplace=True)
|
||||
if self._retrofitting_scenario == 1 or self._retrofitting_scenario == 3:
|
||||
chapter = chapters.chapter('B_shell')
|
||||
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
||||
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
||||
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
||||
capital_cost_skin = capital_cost_opaque+capital_cost_transparent+capital_cost_roof+capital_cost_ground
|
||||
self._yearly_capital_costs.loc[0,'B2010_opaque_walls'],self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0,'B3010_opaque_roof'],self._yearly_capital_costs.loc[0]['B10_superstructure'],\
|
||||
self._yearly_capital_costs.loc[0,'B_Shell']\
|
||||
=[capital_cost_opaque , capital_cost_transparent , capital_cost_roof , capital_cost_ground , capital_cost_skin]
|
||||
capital_cost_skin = capital_cost_opaque + capital_cost_transparent + capital_cost_roof + capital_cost_ground
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'], self._yearly_capital_costs.loc[0]['B2020_transparent'], \
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'], self._yearly_capital_costs.loc[0]['B10_superstructure'], \
|
||||
self._yearly_capital_costs.loc[0, 'B_Shell'] \
|
||||
= [capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin]
|
||||
|
||||
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
||||
|
||||
chapter = chapters.chapter('D_services')
|
||||
|
||||
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
||||
|
@ -126,11 +128,11 @@ class LifeCycleCosts:
|
|||
|
||||
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||
|
||||
self._yearly_capital_costs.loc[0,'D3020_heat_generating_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3030_cooling_generation_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3040_distribution_systems'], \
|
||||
self._yearly_capital_costs.loc[0,'D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0,'D5020_lighting_and_branch_wiring']\
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'], \
|
||||
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'], \
|
||||
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] \
|
||||
= [capital_cost_heating_equipment, capital_cost_cooling_equipment, capital_cost_distribution_equipment,
|
||||
capital_cost_other_hvac_ahu, capital_cost_lighting]
|
||||
for year in range(1, self._number_of_years):
|
||||
|
@ -140,27 +142,28 @@ class LifeCycleCosts:
|
|||
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
||||
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year,'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = reposition_cost_heating_equipment
|
||||
|
||||
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
||||
reposition_cost_cooling_equipment = peak_cooling \
|
||||
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year,'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
|
||||
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = reposition_cost_cooling_equipment
|
||||
|
||||
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
||||
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
|
||||
self._yearly_capital_costs.loc[year,'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||
|
||||
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
||||
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
||||
* costs_increase
|
||||
self._yearly_capital_costs.loc[year,'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
||||
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = reposition_cost_lighting
|
||||
|
||||
if self._retrofitting_scenario==2 or self._retrofitting_scenario==3 :
|
||||
if self._retrofitting_scenario == 2 or self._retrofitting_scenario == 3:
|
||||
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] = surface_pv \
|
||||
* chapter.item('D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||
* chapter.item(
|
||||
'D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||
return self._yearly_capital_costs
|
||||
|
||||
def calculate_end_of_life_costs(self):
|
||||
|
@ -171,8 +174,9 @@ class LifeCycleCosts:
|
|||
for year in range(1, self._number_of_years + 1):
|
||||
price_increase += math.pow(1 + self._consumer_price_index, year)
|
||||
if year == self._number_of_years:
|
||||
self._yearly_end_of_life_costs.at[year,'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost*price_increase
|
||||
self._yearly_end_of_life_costs.fillna(0,inplace=True)
|
||||
self._yearly_end_of_life_costs.at[
|
||||
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
|
||||
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
||||
return self._yearly_end_of_life_costs
|
||||
|
||||
def calculate_total_operational_costs(self):
|
||||
|
@ -180,14 +184,14 @@ class LifeCycleCosts:
|
|||
archetype = self._archetype
|
||||
total_floor_area = self._total_floor_area
|
||||
factor_residential = total_floor_area / 80
|
||||
#todo: split the heating between fuels
|
||||
# todo: split the heating between fuels
|
||||
fixed_gas_cost_year_0 = 0
|
||||
variable_gas_cost_year_0 = 0
|
||||
electricity_heating = 0
|
||||
domestic_hot_water_electricity = 0
|
||||
if self._fuel_type == 1:
|
||||
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly
|
||||
variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0]+
|
||||
variable_gas_cost_year_0 = (building.heating_consumption[cte.YEAR][0] +
|
||||
building.domestic_hot_water_consumption[cte.YEAR][0]) / (1000) * \
|
||||
archetype.operational_cost.fuels[1].variable[0]
|
||||
if self._fuel_type == 0:
|
||||
|
@ -195,13 +199,13 @@ class LifeCycleCosts:
|
|||
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
|
||||
|
||||
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / (1000)
|
||||
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb']/1000
|
||||
electricity_distribution = 0 #building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000
|
||||
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||
electricity_distribution = 0 # building.distribution_systems_electrical_consumption[cte.YEAR][0]/1000
|
||||
total_electricity_consumption = electricity_heating + electricity_cooling + electricity_lighting + \
|
||||
domestic_hot_water_electricity + electricity_plug_loads + electricity_distribution
|
||||
#todo: change when peak electricity demand is coded. Careful with factor residential
|
||||
peak_electricity_demand = 100 #self._peak_electricity_demand
|
||||
# todo: change when peak electricity demand is coded. Careful with factor residential
|
||||
peak_electricity_demand = 100 # self._peak_electricity_demand
|
||||
|
||||
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||
|
@ -214,64 +218,65 @@ class LifeCycleCosts:
|
|||
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||
price_increase_peak_electricity += math.pow(1 + self._electricity_peak_index, year)
|
||||
price_increase_gas += math.pow(1 + self._gas_price_index, year)
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_peak']=peak_electricity_cost_year_0*\
|
||||
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = peak_electricity_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = monthly_electricity_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_electricity'] = variable_electricity_cost_year_0 * \
|
||||
price_increase_electricity
|
||||
self._yearly_operational_costs.at[year,'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
|
||||
variable_electricity_cost_year_0 * price_increase_electricity
|
||||
)
|
||||
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * \
|
||||
price_increase_gas
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0* \
|
||||
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs.at[year,'Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = variable_gas_cost_year_0 * \
|
||||
price_increase_peak_electricity
|
||||
self._yearly_operational_costs.fillna(0,inplace=True)
|
||||
self._yearly_operational_costs.fillna(0, inplace=True)
|
||||
|
||||
return self._yearly_operational_costs
|
||||
|
||||
def calculate_total_operational_incomes(self):
|
||||
building = self._building
|
||||
archetype = self._archetype
|
||||
|
||||
if (building.onsite_electrical_production is None):
|
||||
if cte.YEAR not in building.onsite_electrical_production:
|
||||
onsite_electricity_production = 0
|
||||
else:
|
||||
onsite_electricity_production= 100 #building.onsite_electrical_production[cte.YEAR]/1000
|
||||
|
||||
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||
price_increase_electricity = 0
|
||||
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
price_increase_electricity += math.pow(1 + self._electricity_price_index, year)
|
||||
|
||||
self._yearly_operational_incomes.loc[year,'Incomes electricity']=onsite_electricity_production*\
|
||||
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = onsite_electricity_production * \
|
||||
price_increase_electricity
|
||||
|
||||
self._yearly_operational_incomes.fillna(0,inplace=True)
|
||||
self._yearly_operational_incomes.fillna(0, inplace=True)
|
||||
return self._yearly_operational_incomes
|
||||
|
||||
def calculate_total_maintenance_costs(self):
|
||||
building = self._building
|
||||
archetype = self._archetype
|
||||
#todo: change area pv when the variable exists
|
||||
surface_pv = 10 #building.area_pv
|
||||
# todo: change area pv when the variable exists
|
||||
roof_area = 0
|
||||
for roof in building.roofs:
|
||||
roof_area += roof.solid_polygon.area
|
||||
surface_pv = roof_area * 0.5
|
||||
|
||||
peak_heating = 100#building.heating_peak_load[cte.YEAR][0]
|
||||
peak_cooling = 100#building.cooling_peak_load[cte.YEAR][0]
|
||||
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
|
||||
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
|
||||
|
||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||
print(f'peak_heating{peak_heating}')
|
||||
print(f'maintenance_cost{archetype.operational_cost.maintenance_heating}')
|
||||
|
||||
for year in range(1, self._number_of_years + 1):
|
||||
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||
self._yearly_maintenance_costs.loc[year,'Heating_maintenance'] = maintenance_heating_0 * \
|
||||
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = maintenance_heating_0 * \
|
||||
costs_increase
|
||||
self._yearly_maintenance_costs.loc[year,'Cooling_maintenance'] = maintenance_cooling_0 * \
|
||||
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = maintenance_cooling_0 * \
|
||||
costs_increase
|
||||
self._yearly_maintenance_costs.loc[year,'PV_maintenance'] = maintenance_pv_0 * \
|
||||
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = maintenance_pv_0 * \
|
||||
costs_increase
|
||||
self._yearly_maintenance_costs.fillna(0,inplace=True)
|
||||
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
||||
return self._yearly_maintenance_costs
|
||||
|
|
19
main.py
19
main.py
|
@ -7,25 +7,23 @@ Copyright © 2022 Project Author Pilar Monsalvete Álvarez de Uribarri pilar.mon
|
|||
import glob
|
||||
import os
|
||||
from pathlib import Path
|
||||
import sys
|
||||
import pandas as pd
|
||||
|
||||
import numpy_financial as npf
|
||||
|
||||
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
import pandas as pd
|
||||
from energy_systems_sizing import EnergySystemsSizing
|
||||
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||
import hub.helpers.constants as cte
|
||||
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
||||
from sra_engine import SraEngine
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from energy_systems_sizing import EnergySystemsSizing
|
||||
|
||||
from life_cycle_costs import LifeCycleCosts
|
||||
|
||||
|
||||
def _npv_from_list(npv_discount_rate, list_cashflow):
|
||||
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
|
||||
return lcc_value
|
||||
|
@ -188,6 +186,5 @@ for retrofitting_scenario in retrofitting_scenarios:
|
|||
print(life_cycle_results)
|
||||
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
||||
|
||||
#todo: change if there is more than 1 building
|
||||
life_cycle_results.to_excel(Path(__file__).parent/'out_files'/f'Results.xlsx', index=True)
|
||||
|
||||
|
||||
|
|
1
resources.txt
Normal file
1
resources.txt
Normal file
|
@ -0,0 +1 @@
|
|||
numpy_financial
|
Loading…
Reference in New Issue
Block a user