partial refactor
This commit is contained in:
parent
dd0317c979
commit
43eb91c889
@ -5,28 +5,24 @@ import glob
|
|||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
# configurable parameters
|
# constant
|
||||||
|
|
||||||
|
|
||||||
|
# to remove
|
||||||
|
|
||||||
file_path = Path('./data/selected_building_2864.geojson').resolve()
|
file_path = Path('./data/selected_building_2864.geojson').resolve()
|
||||||
CONSTRUCTION_FORMAT = 'nrcan'
|
CONSTRUCTION_FORMAT = 'nrcan'
|
||||||
USAGE_FORMAT = 'comnet'
|
USAGE_FORMAT = 'comnet'
|
||||||
ENERGY_SYSTEM_FORMAT = 'montreal_custom'
|
ENERGY_SYSTEM_FORMAT = 'montreal_custom'
|
||||||
ATTIC_HEATED_CASE = 0
|
ATTIC_HEATED_CASE = 0
|
||||||
BASEMENT_HEATED_CASE = 1
|
BASEMENT_HEATED_CASE = 1
|
||||||
NUMBER_OF_YEARS = 31
|
|
||||||
PERCENTAGE_CREDIT = 0
|
|
||||||
INTEREST_RATE = 0.04
|
|
||||||
CREDIT_YEARS = 15
|
|
||||||
CONSUMER_PRICE_INDEX = 0.04
|
|
||||||
ELECTRICITY_PEAK_INDEX = 0.05
|
|
||||||
ELECTRICITY_PRICE_INDEX = 0.05
|
|
||||||
GAS_PRICE_INDEX = 0.05
|
|
||||||
DISCOUNT_RATE = 0.03
|
|
||||||
RETROFITTING_YEAR_CONSTRUCTION = 2020
|
|
||||||
|
|
||||||
CLIMATE_REFERENCE_CITY = 'Montreal'
|
CLIMATE_REFERENCE_CITY = 'Montreal'
|
||||||
WEATHER_FILE = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw'
|
WEATHER_FILE = 'CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw'
|
||||||
WEATHER_FORMAT = 'epw'
|
WEATHER_FORMAT = 'epw'
|
||||||
CURRENT_STATUS = 0
|
CURRENT_STATUS = 0
|
||||||
|
|
||||||
|
# constants
|
||||||
|
|
||||||
SKIN_RETROFIT = 1
|
SKIN_RETROFIT = 1
|
||||||
SYSTEM_RETROFIT_AND_PV = 2
|
SYSTEM_RETROFIT_AND_PV = 2
|
||||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
||||||
|
@ -7,10 +7,10 @@ Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
|||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy_financial as npf
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from energy_systems_sizing import EnergySystemsSizing
|
from energy_systems_sizing import EnergySystemsSizing
|
||||||
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
|
||||||
from hub.helpers.dictionaries import Dictionaries
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
from hub.imports.construction_factory import ConstructionFactory
|
from hub.imports.construction_factory import ConstructionFactory
|
||||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||||
@ -20,7 +20,7 @@ from hub.imports.weather_factory import WeatherFactory
|
|||||||
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
from monthly_energy_balance_engine import MonthlyEnergyBalanceEngine
|
||||||
from sra_engine import SraEngine
|
from sra_engine import SraEngine
|
||||||
|
|
||||||
from life_cycle_costs import LifeCycleCosts
|
from life_cycle_costs_old import LifeCycleCosts
|
||||||
|
|
||||||
# import constants
|
# import constants
|
||||||
from costs import CLIMATE_REFERENCE_CITY, WEATHER_FILE, WEATHER_FORMAT, CONSTRUCTION_FORMAT, USAGE_FORMAT
|
from costs import CLIMATE_REFERENCE_CITY, WEATHER_FILE, WEATHER_FORMAT, CONSTRUCTION_FORMAT, USAGE_FORMAT
|
||||||
@ -33,164 +33,3 @@ from costs import RETROFITTING_YEAR_CONSTRUCTION
|
|||||||
from costs import file_path, tmp_folder, out_path
|
from costs import file_path, tmp_folder, out_path
|
||||||
|
|
||||||
|
|
||||||
def _npv_from_list(npv_discount_rate, list_cashflow):
|
|
||||||
lcc_value = npf.npv(npv_discount_rate, list_cashflow)
|
|
||||||
return lcc_value
|
|
||||||
|
|
||||||
|
|
||||||
def _search_archetype(costs_catalog, building_function):
|
|
||||||
costs_archetypes = costs_catalog.entries('archetypes').archetypes
|
|
||||||
for building_archetype in costs_archetypes:
|
|
||||||
if str(building_function) == str(building_archetype.function):
|
|
||||||
return building_archetype
|
|
||||||
raise KeyError('archetype not found')
|
|
||||||
|
|
||||||
|
|
||||||
life_cycle_results = pd.DataFrame()
|
|
||||||
print('[city creation start]')
|
|
||||||
city = GeometryFactory('geojson',
|
|
||||||
path=file_path,
|
|
||||||
height_field='heightmax',
|
|
||||||
year_of_construction_field='ANNEE_CONS',
|
|
||||||
function_field='CODE_UTILI',
|
|
||||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
|
||||||
city.climate_reference_city = CLIMATE_REFERENCE_CITY
|
|
||||||
city.climate_file = (tmp_folder / f'{CLIMATE_REFERENCE_CITY}.cli').resolve()
|
|
||||||
print(f'city created from {file_path}')
|
|
||||||
WeatherFactory(WEATHER_FORMAT, city, file_name=WEATHER_FILE).enrich()
|
|
||||||
print('enrich weather... done')
|
|
||||||
ConstructionFactory(CONSTRUCTION_FORMAT, city).enrich()
|
|
||||||
print('enrich constructions... done')
|
|
||||||
UsageFactory(USAGE_FORMAT, city).enrich()
|
|
||||||
print('enrich usage... done')
|
|
||||||
for building in city.buildings:
|
|
||||||
building.energy_systems_archetype_name = 'system 1 gas'
|
|
||||||
EnergySystemsFactory(ENERGY_SYSTEM_FORMAT, city).enrich()
|
|
||||||
print('enrich systems... done')
|
|
||||||
print('exporting:')
|
|
||||||
catalog = CostCatalogFactory('montreal_custom').catalog
|
|
||||||
print('costs catalog access... done')
|
|
||||||
sra_file = (tmp_folder / f'{city.name}_sra.xml').resolve()
|
|
||||||
SraEngine(city, sra_file, tmp_folder, WEATHER_FILE)
|
|
||||||
print(' sra processed...')
|
|
||||||
|
|
||||||
for building in city.buildings:
|
|
||||||
building.attic_heated = ATTIC_HEATED_CASE
|
|
||||||
building.basement_heated = BASEMENT_HEATED_CASE
|
|
||||||
|
|
||||||
for retrofitting_scenario in RETROFITTING_SCENARIOS:
|
|
||||||
|
|
||||||
if retrofitting_scenario in (SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV):
|
|
||||||
for building in city.buildings:
|
|
||||||
building.year_of_construction = RETROFITTING_YEAR_CONSTRUCTION
|
|
||||||
ConstructionFactory(CONSTRUCTION_FORMAT, city).enrich()
|
|
||||||
print('enrich retrofitted constructions... done')
|
|
||||||
|
|
||||||
if retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
|
||||||
for building in city.buildings:
|
|
||||||
building.energy_systems_archetype_name = 'system 6 electricity pv'
|
|
||||||
EnergySystemsFactory(ENERGY_SYSTEM_FORMAT, city).enrich()
|
|
||||||
print('enrich systems... done')
|
|
||||||
|
|
||||||
MonthlyEnergyBalanceEngine(city, tmp_folder)
|
|
||||||
|
|
||||||
EnergySystemsSizing(city).enrich()
|
|
||||||
|
|
||||||
print(f'beginning costing scenario {retrofitting_scenario} systems... done')
|
|
||||||
|
|
||||||
for building in city.buildings:
|
|
||||||
|
|
||||||
function = Dictionaries().hub_function_to_montreal_custom_costs_function[building.function]
|
|
||||||
archetype = _search_archetype(catalog, function)
|
|
||||||
print('lcc for first building started')
|
|
||||||
if "gas" in building.energy_systems_archetype_name:
|
|
||||||
FUEL_TYPE = 1
|
|
||||||
else:
|
|
||||||
FUEL_TYPE = 0
|
|
||||||
|
|
||||||
lcc = LifeCycleCosts(building, archetype, NUMBER_OF_YEARS, CONSUMER_PRICE_INDEX, ELECTRICITY_PEAK_INDEX,
|
|
||||||
ELECTRICITY_PRICE_INDEX, GAS_PRICE_INDEX, DISCOUNT_RATE, retrofitting_scenario, FUEL_TYPE)
|
|
||||||
global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs()
|
|
||||||
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
|
|
||||||
global_operational_costs = lcc.calculate_total_operational_costs
|
|
||||||
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
|
||||||
global_operational_incomes = lcc.calculate_total_operational_incomes()
|
|
||||||
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
|
|
||||||
with pd.ExcelWriter(full_path_output) as writer:
|
|
||||||
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
|
|
||||||
global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs')
|
|
||||||
global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
|
|
||||||
global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
|
|
||||||
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
|
|
||||||
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
|
|
||||||
|
|
||||||
df_capital_costs_skin = (
|
|
||||||
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
|
|
||||||
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
|
|
||||||
)
|
|
||||||
df_capital_costs_systems = (
|
|
||||||
global_capital_costs['D3020_heat_generating_systems'] +
|
|
||||||
global_capital_costs['D3030_cooling_generation_systems'] +
|
|
||||||
global_capital_costs['D3080_other_hvac_ahu'] +
|
|
||||||
global_capital_costs['D5020_lighting_and_branch_wiring'] +
|
|
||||||
global_capital_costs['D301010_photovoltaic_system']
|
|
||||||
)
|
|
||||||
df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs']
|
|
||||||
df_operational_costs = (
|
|
||||||
global_operational_costs['Fixed_costs_electricity_peak'] +
|
|
||||||
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
|
||||||
global_operational_costs['Fixed_costs_electricity_peak'] +
|
|
||||||
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
|
||||||
global_operational_costs['Variable_costs_electricity'] +
|
|
||||||
global_operational_costs['Fixed_costs_gas'] +
|
|
||||||
global_operational_costs['Variable_costs_gas']
|
|
||||||
)
|
|
||||||
df_maintenance_costs = (
|
|
||||||
global_maintenance_costs['Heating_maintenance'] +
|
|
||||||
global_maintenance_costs['Cooling_maintenance'] +
|
|
||||||
global_maintenance_costs['PV_maintenance']
|
|
||||||
)
|
|
||||||
df_operational_incomes = global_operational_incomes['Incomes electricity']
|
|
||||||
|
|
||||||
df_capital_incomes = (
|
|
||||||
global_capital_incomes['Subsidies construction'] +
|
|
||||||
global_capital_incomes['Subsidies HVAC'] +
|
|
||||||
global_capital_incomes['Subsidies PV']
|
|
||||||
)
|
|
||||||
|
|
||||||
life_cycle_costs_capital_skin = _npv_from_list(DISCOUNT_RATE, df_capital_costs_skin.values.tolist())
|
|
||||||
life_cycle_costs_capital_systems = _npv_from_list(DISCOUNT_RATE, df_capital_costs_systems.values.tolist())
|
|
||||||
life_cycle_costs_end_of_life_costs = _npv_from_list(DISCOUNT_RATE, df_end_of_life_costs.values.tolist())
|
|
||||||
life_cycle_operational_costs = _npv_from_list(DISCOUNT_RATE, df_operational_costs.values.tolist())
|
|
||||||
life_cycle_maintenance_costs = _npv_from_list(DISCOUNT_RATE, df_maintenance_costs.values.tolist())
|
|
||||||
life_cycle_operational_incomes = _npv_from_list(DISCOUNT_RATE, df_operational_incomes.values.tolist())
|
|
||||||
life_cycle_capital_incomes = _npv_from_list(DISCOUNT_RATE, df_capital_incomes.values.tolist())
|
|
||||||
|
|
||||||
life_cycle_costs = (
|
|
||||||
life_cycle_costs_capital_skin +
|
|
||||||
life_cycle_costs_capital_systems +
|
|
||||||
life_cycle_costs_end_of_life_costs +
|
|
||||||
life_cycle_operational_costs +
|
|
||||||
life_cycle_maintenance_costs -
|
|
||||||
life_cycle_operational_incomes -
|
|
||||||
life_cycle_capital_incomes
|
|
||||||
)
|
|
||||||
|
|
||||||
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
|
||||||
life_cycle_costs_capital_systems,
|
|
||||||
life_cycle_costs_end_of_life_costs,
|
|
||||||
life_cycle_operational_costs,
|
|
||||||
life_cycle_maintenance_costs,
|
|
||||||
life_cycle_operational_incomes,
|
|
||||||
life_cycle_capital_incomes]
|
|
||||||
|
|
||||||
life_cycle_results.index = ['total_capital_costs_skin',
|
|
||||||
'total_capital_costs_systems',
|
|
||||||
'end_of_life_costs',
|
|
||||||
'total_operational_costs',
|
|
||||||
'total_maintenance_costs',
|
|
||||||
'operational_incomes',
|
|
||||||
'capital_incomes']
|
|
||||||
|
|
||||||
print(life_cycle_results)
|
|
||||||
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
|
||||||
|
6
costs/building.py
Normal file
6
costs/building.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
from hub.persistence.models.city_object import CityObject
|
||||||
|
|
||||||
|
class Building(CityObject):
|
||||||
|
|
||||||
|
def __init__(self, ):
|
||||||
|
super()
|
198
costs/configuration.py
Normal file
198
costs/configuration.py
Normal file
@ -0,0 +1,198 @@
|
|||||||
|
"""
|
||||||
|
Configuration module
|
||||||
|
"""
|
||||||
|
from hub.catalog_factories.costs_catalog_factory import CostCatalogFactory
|
||||||
|
from hub.catalog_factories.catalog import Catalog
|
||||||
|
|
||||||
|
|
||||||
|
class Configuration:
|
||||||
|
"""
|
||||||
|
Configuration class
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
number_of_years,
|
||||||
|
percentage_credit,
|
||||||
|
interest_rate,
|
||||||
|
credit_years,
|
||||||
|
consumer_price_index,
|
||||||
|
electricity_peak_index,
|
||||||
|
electricity_price_index,
|
||||||
|
gas_price_index,
|
||||||
|
discount_rate,
|
||||||
|
retrofitting_year_construction,
|
||||||
|
factories_handler
|
||||||
|
):
|
||||||
|
self._number_of_years = number_of_years
|
||||||
|
self._percentage_credit = percentage_credit
|
||||||
|
self._interest_rate = interest_rate
|
||||||
|
self._credit_years = credit_years
|
||||||
|
self._consumer_price_index = consumer_price_index
|
||||||
|
self._electricity_peak_index = electricity_peak_index
|
||||||
|
self._electricity_price_index = electricity_price_index
|
||||||
|
self._gas_price_index = gas_price_index
|
||||||
|
self._discount_rate = discount_rate
|
||||||
|
self._retrofitting_year_construction = retrofitting_year_construction
|
||||||
|
self._factories_handler = factories_handler
|
||||||
|
self._cost_catalog = CostCatalogFactory(factories_handler).catalog
|
||||||
|
|
||||||
|
@property
|
||||||
|
def number_of_years(self):
|
||||||
|
"""
|
||||||
|
Get number of years
|
||||||
|
"""
|
||||||
|
return self._number_of_years
|
||||||
|
|
||||||
|
@number_of_years.setter
|
||||||
|
def number_of_years(self, value):
|
||||||
|
"""
|
||||||
|
Set number of years
|
||||||
|
"""
|
||||||
|
self._number_of_years = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def percentage_credit(self):
|
||||||
|
"""
|
||||||
|
Get percentage credit
|
||||||
|
"""
|
||||||
|
return self._percentage_credit
|
||||||
|
|
||||||
|
@percentage_credit.setter
|
||||||
|
def percentage_credit(self, value):
|
||||||
|
"""
|
||||||
|
Set percentage credit
|
||||||
|
"""
|
||||||
|
self._percentage_credit = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def interest_rate(self):
|
||||||
|
"""
|
||||||
|
Get interest rate
|
||||||
|
"""
|
||||||
|
return self._interest_rate
|
||||||
|
|
||||||
|
@interest_rate.setter
|
||||||
|
def interest_rate(self, value):
|
||||||
|
"""
|
||||||
|
Set interest rate
|
||||||
|
"""
|
||||||
|
self._interest_rate = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def credit_years(self):
|
||||||
|
"""
|
||||||
|
Get credit years
|
||||||
|
"""
|
||||||
|
return self._credit_years
|
||||||
|
|
||||||
|
@credit_years.setter
|
||||||
|
def credit_years(self, value):
|
||||||
|
"""
|
||||||
|
Set credit years
|
||||||
|
"""
|
||||||
|
self._credit_years = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def consumer_price_index(self):
|
||||||
|
"""
|
||||||
|
Get consumer price index
|
||||||
|
"""
|
||||||
|
return self._consumer_price_index
|
||||||
|
|
||||||
|
@consumer_price_index.setter
|
||||||
|
def consumer_price_index(self, value):
|
||||||
|
"""
|
||||||
|
Set consumer price index
|
||||||
|
"""
|
||||||
|
self._consumer_price_index = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def electricity_peak_index(self):
|
||||||
|
"""
|
||||||
|
Get electricity peak index
|
||||||
|
"""
|
||||||
|
return self._electricity_peak_index
|
||||||
|
|
||||||
|
@electricity_peak_index.setter
|
||||||
|
def electricity_peak_index(self, value):
|
||||||
|
"""
|
||||||
|
Set electricity peak index
|
||||||
|
"""
|
||||||
|
self._electricity_peak_index = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def electricity_price_index(self):
|
||||||
|
"""
|
||||||
|
Get electricity price index
|
||||||
|
"""
|
||||||
|
return self._electricity_price_index
|
||||||
|
|
||||||
|
@electricity_price_index.setter
|
||||||
|
def electricity_price_index(self, value):
|
||||||
|
"""
|
||||||
|
Set electricity price index
|
||||||
|
"""
|
||||||
|
self._electricity_price_index = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def gas_price_index(self):
|
||||||
|
"""
|
||||||
|
Get gas price index
|
||||||
|
"""
|
||||||
|
return self._gas_price_index
|
||||||
|
|
||||||
|
@gas_price_index.setter
|
||||||
|
def gas_price_index(self, value):
|
||||||
|
"""
|
||||||
|
Set gas price index
|
||||||
|
"""
|
||||||
|
self._gas_price_index = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def discount_rate(self):
|
||||||
|
"""
|
||||||
|
Get discount rate
|
||||||
|
"""
|
||||||
|
return self._discount_rate
|
||||||
|
|
||||||
|
@discount_rate.setter
|
||||||
|
def discount_rate(self, value):
|
||||||
|
"""
|
||||||
|
Set discount rate
|
||||||
|
"""
|
||||||
|
self._discount_rate = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def retrofitting_year_construction(self):
|
||||||
|
"""
|
||||||
|
Get retrofitting year construction
|
||||||
|
"""
|
||||||
|
return self._retrofitting_year_construction
|
||||||
|
|
||||||
|
@retrofitting_year_construction.setter
|
||||||
|
def retrofitting_year_construction(self, value):
|
||||||
|
"""
|
||||||
|
Set retrofitting year construction
|
||||||
|
"""
|
||||||
|
self._retrofitting_year_construction = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def factories_handler(self):
|
||||||
|
"""
|
||||||
|
Get factories handler
|
||||||
|
"""
|
||||||
|
return self._factories_handler
|
||||||
|
|
||||||
|
@factories_handler.setter
|
||||||
|
def factories_handler(self, value):
|
||||||
|
"""
|
||||||
|
Set factories handler
|
||||||
|
"""
|
||||||
|
self._factories_handler = value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def cost_catalog(self) -> Catalog:
|
||||||
|
"""
|
||||||
|
Get cost catalog
|
||||||
|
"""
|
||||||
|
return self._cost_catalog
|
162
costs/cost.py
Normal file
162
costs/cost.py
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
"""
|
||||||
|
Cost module
|
||||||
|
"""
|
||||||
|
import pandas as pd
|
||||||
|
from hub.city_model_structure.city import City
|
||||||
|
|
||||||
|
from configuration import Configuration
|
||||||
|
from life_cycle_costs import LifeCycleCosts
|
||||||
|
|
||||||
|
|
||||||
|
class Cost:
|
||||||
|
"""
|
||||||
|
Cost class
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
city: City,
|
||||||
|
number_of_years=31,
|
||||||
|
percentage_credit=0,
|
||||||
|
interest_rate=0.04,
|
||||||
|
credit_years=15,
|
||||||
|
consumer_price_index=0.04,
|
||||||
|
electricity_peak_index=0.05,
|
||||||
|
electricity_price_index=0.05,
|
||||||
|
gas_price_index=0.05,
|
||||||
|
discount_rate=0.03,
|
||||||
|
retrofitting_year_construction=2020,
|
||||||
|
factories_handler='montreal_custom'):
|
||||||
|
self._city = city
|
||||||
|
self._configuration = Configuration(number_of_years,
|
||||||
|
percentage_credit,
|
||||||
|
interest_rate, credit_years,
|
||||||
|
consumer_price_index,
|
||||||
|
electricity_peak_index,
|
||||||
|
electricity_price_index,
|
||||||
|
gas_price_index,
|
||||||
|
discount_rate,
|
||||||
|
retrofitting_year_construction,
|
||||||
|
factories_handler)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def life_cycle(self) -> pd.DataFrame:
|
||||||
|
"""
|
||||||
|
Get complete life cycle costs
|
||||||
|
:return: DataFrame
|
||||||
|
"""
|
||||||
|
results = pd.DataFrame()
|
||||||
|
for building in self._city.buildings:
|
||||||
|
lcc = LifeCycleCosts(building, self._configuration)
|
||||||
|
global_capital_costs, global_capital_incomes = lcc.calculate_capital_costs()
|
||||||
|
global_end_of_life_costs = lcc.calculate_end_of_life_costs()
|
||||||
|
global_operational_costs = lcc.calculate_total_operational_costs
|
||||||
|
global_maintenance_costs = lcc.calculate_total_maintenance_costs()
|
||||||
|
global_operational_incomes = lcc.calculate_total_operational_incomes()
|
||||||
|
results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
||||||
|
life_cycle_costs_capital_systems,
|
||||||
|
life_cycle_costs_end_of_life_costs,
|
||||||
|
life_cycle_operational_costs,
|
||||||
|
life_cycle_maintenance_costs,
|
||||||
|
life_cycle_operational_incomes,
|
||||||
|
life_cycle_capital_incomes]
|
||||||
|
|
||||||
|
life_cycle_results.index = ['total_capital_costs_skin',
|
||||||
|
'total_capital_costs_systems',
|
||||||
|
'end_of_life_costs',
|
||||||
|
'total_operational_costs',
|
||||||
|
'total_maintenance_costs',
|
||||||
|
'operational_incomes',
|
||||||
|
'capital_incomes']
|
||||||
|
return results
|
||||||
|
"""
|
||||||
|
|
||||||
|
if "gas" in building.energy_systems_archetype_name:
|
||||||
|
FUEL_TYPE = 1
|
||||||
|
else:
|
||||||
|
FUEL_TYPE = 0
|
||||||
|
|
||||||
|
|
||||||
|
full_path_output = Path(out_path / f'output {retrofitting_scenario} {building.name}.xlsx').resolve()
|
||||||
|
with pd.ExcelWriter(full_path_output) as writer:
|
||||||
|
global_capital_costs.to_excel(writer, sheet_name='global_capital_costs')
|
||||||
|
global_end_of_life_costs.to_excel(writer, sheet_name='global_end_of_life_costs')
|
||||||
|
global_operational_costs.to_excel(writer, sheet_name='global_operational_costs')
|
||||||
|
global_maintenance_costs.to_excel(writer, sheet_name='global_maintenance_costs')
|
||||||
|
global_operational_incomes.to_excel(writer, sheet_name='global_operational_incomes')
|
||||||
|
global_capital_incomes.to_excel(writer, sheet_name='global_capital_incomes')
|
||||||
|
|
||||||
|
df_capital_costs_skin = (
|
||||||
|
global_capital_costs['B2010_opaque_walls'] + global_capital_costs['B2020_transparent'] +
|
||||||
|
global_capital_costs['B3010_opaque_roof'] + global_capital_costs['B10_superstructure']
|
||||||
|
)
|
||||||
|
df_capital_costs_systems = (
|
||||||
|
global_capital_costs['D3020_heat_generating_systems'] +
|
||||||
|
global_capital_costs['D3030_cooling_generation_systems'] +
|
||||||
|
global_capital_costs['D3080_other_hvac_ahu'] +
|
||||||
|
global_capital_costs['D5020_lighting_and_branch_wiring'] +
|
||||||
|
global_capital_costs['D301010_photovoltaic_system']
|
||||||
|
)
|
||||||
|
df_end_of_life_costs = global_end_of_life_costs['End_of_life_costs']
|
||||||
|
df_operational_costs = (
|
||||||
|
global_operational_costs['Fixed_costs_electricity_peak'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_peak'] +
|
||||||
|
global_operational_costs['Fixed_costs_electricity_monthly'] +
|
||||||
|
global_operational_costs['Variable_costs_electricity'] +
|
||||||
|
global_operational_costs['Fixed_costs_gas'] +
|
||||||
|
global_operational_costs['Variable_costs_gas']
|
||||||
|
)
|
||||||
|
df_maintenance_costs = (
|
||||||
|
global_maintenance_costs['Heating_maintenance'] +
|
||||||
|
global_maintenance_costs['Cooling_maintenance'] +
|
||||||
|
global_maintenance_costs['PV_maintenance']
|
||||||
|
)
|
||||||
|
df_operational_incomes = global_operational_incomes['Incomes electricity']
|
||||||
|
|
||||||
|
df_capital_incomes = (
|
||||||
|
global_capital_incomes['Subsidies construction'] +
|
||||||
|
global_capital_incomes['Subsidies HVAC'] +
|
||||||
|
global_capital_incomes['Subsidies PV']
|
||||||
|
)
|
||||||
|
|
||||||
|
life_cycle_costs_capital_skin = npf.npv(self._discount_rate, list_cashflow)_npv_from_list(, df_capital_costs_skin.values.tolist())
|
||||||
|
life_cycle_costs_capital_systems = _npv_from_list(DISCOUNT_RATE, df_capital_costs_systems.values.tolist())
|
||||||
|
life_cycle_costs_end_of_life_costs = _npv_from_list(DISCOUNT_RATE, df_end_of_life_costs.values.tolist())
|
||||||
|
life_cycle_operational_costs = _npv_from_list(DISCOUNT_RATE, df_operational_costs.values.tolist())
|
||||||
|
life_cycle_maintenance_costs = _npv_from_list(DISCOUNT_RATE, df_maintenance_costs.values.tolist())
|
||||||
|
life_cycle_operational_incomes = _npv_from_list(DISCOUNT_RATE, df_operational_incomes.values.tolist())
|
||||||
|
life_cycle_capital_incomes = _npv_from_list(DISCOUNT_RATE, df_capital_incomes.values.tolist())
|
||||||
|
|
||||||
|
life_cycle_costs = (
|
||||||
|
life_cycle_costs_capital_skin +
|
||||||
|
life_cycle_costs_capital_systems +
|
||||||
|
life_cycle_costs_end_of_life_costs +
|
||||||
|
life_cycle_operational_costs +
|
||||||
|
life_cycle_maintenance_costs -
|
||||||
|
life_cycle_operational_incomes -
|
||||||
|
life_cycle_capital_incomes
|
||||||
|
)
|
||||||
|
|
||||||
|
life_cycle_results[f'Scenario {retrofitting_scenario}'] = [life_cycle_costs_capital_skin,
|
||||||
|
life_cycle_costs_capital_systems,
|
||||||
|
life_cycle_costs_end_of_life_costs,
|
||||||
|
life_cycle_operational_costs,
|
||||||
|
life_cycle_maintenance_costs,
|
||||||
|
life_cycle_operational_incomes,
|
||||||
|
life_cycle_capital_incomes]
|
||||||
|
|
||||||
|
life_cycle_results.index = ['total_capital_costs_skin',
|
||||||
|
'total_capital_costs_systems',
|
||||||
|
'end_of_life_costs',
|
||||||
|
'total_operational_costs',
|
||||||
|
'total_maintenance_costs',
|
||||||
|
'operational_incomes',
|
||||||
|
'capital_incomes']
|
||||||
|
|
||||||
|
print(life_cycle_results)
|
||||||
|
print(f'Scenario {retrofitting_scenario} {life_cycle_costs}')
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
@ -1,78 +1,36 @@
|
|||||||
"""
|
"""
|
||||||
LifeCycleCosts module calculates the life cycle costs of one building
|
Life cycle costs module
|
||||||
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
||||||
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
|
||||||
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import math
|
from hub.city_model_structure.building import Building
|
||||||
|
from configuration import Configuration
|
||||||
import pandas as pd
|
|
||||||
import numpy_financial as npf
|
|
||||||
import hub.helpers.constants as cte
|
|
||||||
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, PERCENTAGE_CREDIT,INTEREST_RATE,CREDIT_YEARS
|
|
||||||
|
|
||||||
|
|
||||||
class LifeCycleCosts:
|
class LifeCycleCosts:
|
||||||
"""
|
"""
|
||||||
Life cycle cost class
|
Life cycle costs class
|
||||||
"""
|
"""
|
||||||
|
def __init__(self, building: Building, configuration: Configuration):
|
||||||
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
|
||||||
electricity_price_index, gas_price_index, discount_rate,
|
|
||||||
retrofitting_scenario, fuel_type):
|
|
||||||
self._building = building
|
self._building = building
|
||||||
self._number_of_years = number_of_years
|
self._configuration = configuration
|
||||||
self._consumer_price_index = consumer_price_index
|
|
||||||
self._electricity_peak_index = electricity_peak_index
|
|
||||||
self._electricity_price_index = electricity_price_index
|
|
||||||
self._gas_price_index = gas_price_index
|
|
||||||
self._discount_rate = discount_rate
|
|
||||||
self._archetype = archetype
|
|
||||||
self._end_of_life_cost = 0
|
|
||||||
self._capital_costs_at_year_0 = 0
|
|
||||||
self._items = 0
|
|
||||||
self._fuels = 0
|
|
||||||
self._concepts = 0
|
|
||||||
self._retrofitting_scenario = retrofitting_scenario
|
|
||||||
self._total_floor_area = 0
|
self._total_floor_area = 0
|
||||||
self._fuel_type = fuel_type
|
|
||||||
for internal_zone in building.internal_zones:
|
for internal_zone in building.internal_zones:
|
||||||
for thermal_zone in internal_zone.thermal_zones:
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
self._total_floor_area += thermal_zone.total_floor_area
|
self._total_floor_area += thermal_zone.total_floor_area
|
||||||
|
|
||||||
# todo: revise if it works
|
self._archetype = None
|
||||||
rng = range(number_of_years)
|
for archetype in self._configuration.cost_catalog.entries('archetypes').archetype:
|
||||||
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
|
if str(building.function) == str(archetype.function):
|
||||||
'B3010_opaque_roof', 'B10_superstructure',
|
self._archetype = archetype
|
||||||
'D301010_photovoltaic_system',
|
break
|
||||||
'D3020_heat_generating_systems',
|
if not self._archetype:
|
||||||
'D3030_cooling_generation_systems',
|
raise KeyError('archetype not found')
|
||||||
'D3040_distribution_systems',
|
|
||||||
'D3080_other_hvac_ahu',
|
|
||||||
'D5020_lighting_and_branch_wiring'],
|
|
||||||
dtype='float')
|
|
||||||
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
|
||||||
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
|
||||||
'Fixed_costs_electricity_monthly',
|
|
||||||
'Variable_costs_electricity', 'Fixed_costs_gas',
|
|
||||||
'Variable_costs_gas'],
|
|
||||||
dtype='float')
|
|
||||||
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
|
|
||||||
'PV_maintenance'], dtype='float')
|
|
||||||
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
|
|
||||||
|
|
||||||
self._yearly_capital_incomes = pd.DataFrame(index=rng, columns=['Subsidies construction',
|
|
||||||
'Subsidies HVAC', 'Subsidies PV'], dtype='float')
|
|
||||||
|
|
||||||
def calculate_capital_costs(self):
|
def calculate_capital_costs(self):
|
||||||
"""
|
"""
|
||||||
Calculate capital cost
|
Calculate capital cost
|
||||||
:return: pd.DataFrame
|
:return: pd.DataFrame
|
||||||
"""
|
"""
|
||||||
building = self._building
|
|
||||||
archetype = self._archetype
|
|
||||||
|
|
||||||
surface_opaque = 0
|
surface_opaque = 0
|
||||||
surface_transparent = 0
|
surface_transparent = 0
|
||||||
surface_roof = 0
|
surface_roof = 0
|
||||||
@ -88,7 +46,7 @@ class LifeCycleCosts:
|
|||||||
capital_cost_other_hvac_ahu = 0
|
capital_cost_other_hvac_ahu = 0
|
||||||
capital_cost_lighting = 0
|
capital_cost_lighting = 0
|
||||||
|
|
||||||
total_floor_area = self._total_floor_area
|
total_floor_area = self._building.floor_area
|
||||||
|
|
||||||
for internal_zone in building.internal_zones:
|
for internal_zone in building.internal_zones:
|
||||||
for thermal_zone in internal_zone.thermal_zones:
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
@ -230,140 +188,3 @@ class LifeCycleCosts:
|
|||||||
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
|
||||||
self._yearly_capital_incomes.fillna(0, inplace=True)
|
self._yearly_capital_incomes.fillna(0, inplace=True)
|
||||||
return self._yearly_capital_costs, self._yearly_capital_incomes
|
return self._yearly_capital_costs, self._yearly_capital_incomes
|
||||||
|
|
||||||
def calculate_end_of_life_costs(self):
|
|
||||||
"""
|
|
||||||
Calculate end of life costs
|
|
||||||
:return: pd.DataFrame
|
|
||||||
"""
|
|
||||||
archetype = self._archetype
|
|
||||||
total_floor_area = self._total_floor_area
|
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
price_increase = math.pow(1 + self._consumer_price_index, year)
|
|
||||||
if year == self._number_of_years:
|
|
||||||
self._yearly_end_of_life_costs.at[
|
|
||||||
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
|
|
||||||
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
|
||||||
return self._yearly_end_of_life_costs
|
|
||||||
|
|
||||||
@property
|
|
||||||
def calculate_total_operational_costs(self):
|
|
||||||
"""
|
|
||||||
Calculate total operational costs
|
|
||||||
:return: pd.DataFrame
|
|
||||||
"""
|
|
||||||
building = self._building
|
|
||||||
archetype = self._archetype
|
|
||||||
total_floor_area = self._total_floor_area
|
|
||||||
factor_residential = total_floor_area / 80
|
|
||||||
# todo: split the heating between fuels
|
|
||||||
fixed_gas_cost_year_0 = 0
|
|
||||||
variable_gas_cost_year_0 = 0
|
|
||||||
electricity_heating = 0
|
|
||||||
domestic_hot_water_electricity = 0
|
|
||||||
if self._fuel_type == 1:
|
|
||||||
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
|
|
||||||
variable_gas_cost_year_0 = (
|
|
||||||
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
|
|
||||||
archetype.operational_cost.fuels[1].variable[0]
|
|
||||||
)
|
|
||||||
if self._fuel_type == 0:
|
|
||||||
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
|
|
||||||
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
|
|
||||||
|
|
||||||
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
|
|
||||||
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
|
||||||
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
|
||||||
electricity_distribution = 0
|
|
||||||
total_electricity_consumption = (
|
|
||||||
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
|
||||||
electricity_plug_loads + electricity_distribution
|
|
||||||
)
|
|
||||||
|
|
||||||
# todo: change when peak electricity demand is coded. Careful with factor residential
|
|
||||||
peak_electricity_demand = 100 # self._peak_electricity_demand
|
|
||||||
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
|
||||||
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
|
||||||
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
|
||||||
price_increase_peak_electricity = math.pow(1 + self._electricity_peak_index, year)
|
|
||||||
price_increase_gas = math.pow(1 + self._gas_price_index, year)
|
|
||||||
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
|
|
||||||
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
|
||||||
)
|
|
||||||
|
|
||||||
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
|
|
||||||
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
|
||||||
)
|
|
||||||
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
|
|
||||||
variable_electricity_cost_year_0 * price_increase_electricity
|
|
||||||
)
|
|
||||||
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
|
|
||||||
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
|
||||||
variable_gas_cost_year_0 * price_increase_peak_electricity
|
|
||||||
)
|
|
||||||
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
|
||||||
variable_gas_cost_year_0 * price_increase_peak_electricity
|
|
||||||
)
|
|
||||||
self._yearly_operational_costs.fillna(0, inplace=True)
|
|
||||||
|
|
||||||
return self._yearly_operational_costs
|
|
||||||
|
|
||||||
def calculate_total_operational_incomes(self):
|
|
||||||
"""
|
|
||||||
Calculate total operational incomes
|
|
||||||
:return: pd.DataFrame
|
|
||||||
"""
|
|
||||||
building = self._building
|
|
||||||
if cte.YEAR not in building.onsite_electrical_production:
|
|
||||||
onsite_electricity_production = 0
|
|
||||||
else:
|
|
||||||
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
|
||||||
# todo: check the adequate assignation of price. Pilar
|
|
||||||
price_export = 0.075 # archetype.income.electricity_export
|
|
||||||
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
|
|
||||||
onsite_electricity_production * price_export * price_increase_electricity
|
|
||||||
)
|
|
||||||
|
|
||||||
self._yearly_operational_incomes.fillna(0, inplace=True)
|
|
||||||
return self._yearly_operational_incomes
|
|
||||||
|
|
||||||
def calculate_total_maintenance_costs(self):
|
|
||||||
"""
|
|
||||||
Calculate total maintenance costs
|
|
||||||
:return: pd.DataFrame
|
|
||||||
"""
|
|
||||||
building = self._building
|
|
||||||
archetype = self._archetype
|
|
||||||
# todo: change area pv when the variable exists
|
|
||||||
roof_area = 0
|
|
||||||
for roof in building.roofs:
|
|
||||||
roof_area += roof.solid_polygon.area
|
|
||||||
surface_pv = roof_area * 0.5
|
|
||||||
|
|
||||||
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
|
|
||||||
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
|
|
||||||
|
|
||||||
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
|
||||||
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
|
||||||
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
|
||||||
|
|
||||||
for year in range(1, self._number_of_years + 1):
|
|
||||||
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
|
||||||
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
|
|
||||||
maintenance_heating_0 * costs_increase
|
|
||||||
)
|
|
||||||
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
|
|
||||||
maintenance_cooling_0 * costs_increase
|
|
||||||
)
|
|
||||||
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
|
|
||||||
maintenance_pv_0 * costs_increase
|
|
||||||
)
|
|
||||||
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
|
||||||
return self._yearly_maintenance_costs
|
|
||||||
|
369
costs/life_cycle_costs_old.py
Normal file
369
costs/life_cycle_costs_old.py
Normal file
@ -0,0 +1,369 @@
|
|||||||
|
"""
|
||||||
|
LifeCycleCosts module calculates the life cycle costs of one building
|
||||||
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
||||||
|
Copyright © 2022 Project Author Pilar Monsalvete Alvarez de Uribarri pilar_monsalvete@concordia.ca
|
||||||
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import numpy_financial as npf
|
||||||
|
import hub.helpers.constants as cte
|
||||||
|
from costs import SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, PERCENTAGE_CREDIT,INTEREST_RATE,CREDIT_YEARS
|
||||||
|
|
||||||
|
|
||||||
|
class LifeCycleCosts:
|
||||||
|
"""
|
||||||
|
Life cycle cost class
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, building, archetype, number_of_years, consumer_price_index, electricity_peak_index,
|
||||||
|
electricity_price_index, gas_price_index, discount_rate,
|
||||||
|
retrofitting_scenario, fuel_type):
|
||||||
|
self._building = building
|
||||||
|
self._number_of_years = number_of_years
|
||||||
|
self._consumer_price_index = consumer_price_index
|
||||||
|
self._electricity_peak_index = electricity_peak_index
|
||||||
|
self._electricity_price_index = electricity_price_index
|
||||||
|
self._gas_price_index = gas_price_index
|
||||||
|
self._discount_rate = discount_rate
|
||||||
|
self._archetype = archetype
|
||||||
|
self._end_of_life_cost = 0
|
||||||
|
self._capital_costs_at_year_0 = 0
|
||||||
|
self._items = 0
|
||||||
|
self._fuels = 0
|
||||||
|
self._concepts = 0
|
||||||
|
self._retrofitting_scenario = retrofitting_scenario
|
||||||
|
self._total_floor_area = 0
|
||||||
|
self._fuel_type = fuel_type
|
||||||
|
for internal_zone in building.internal_zones:
|
||||||
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
|
self._total_floor_area += thermal_zone.total_floor_area
|
||||||
|
|
||||||
|
# todo: revise if it works
|
||||||
|
rng = range(number_of_years)
|
||||||
|
self._yearly_capital_costs = pd.DataFrame(index=rng, columns=['B2010_opaque_walls', 'B2020_transparent',
|
||||||
|
'B3010_opaque_roof', 'B10_superstructure',
|
||||||
|
'D301010_photovoltaic_system',
|
||||||
|
'D3020_heat_generating_systems',
|
||||||
|
'D3030_cooling_generation_systems',
|
||||||
|
'D3040_distribution_systems',
|
||||||
|
'D3080_other_hvac_ahu',
|
||||||
|
'D5020_lighting_and_branch_wiring'],
|
||||||
|
dtype='float')
|
||||||
|
self._yearly_end_of_life_costs = pd.DataFrame(index=rng, columns=['End_of_life_costs'], dtype='float')
|
||||||
|
self._yearly_operational_costs = pd.DataFrame(index=rng, columns=['Fixed_costs_electricity_peak',
|
||||||
|
'Fixed_costs_electricity_monthly',
|
||||||
|
'Variable_costs_electricity', 'Fixed_costs_gas',
|
||||||
|
'Variable_costs_gas'],
|
||||||
|
dtype='float')
|
||||||
|
self._yearly_maintenance_costs = pd.DataFrame(index=rng, columns=['Heating_maintenance', 'Cooling_maintenance',
|
||||||
|
'PV_maintenance'], dtype='float')
|
||||||
|
self._yearly_operational_incomes = pd.DataFrame(index=rng, columns=['Incomes electricity'], dtype='float')
|
||||||
|
|
||||||
|
self._yearly_capital_incomes = pd.DataFrame(index=rng, columns=['Subsidies construction',
|
||||||
|
'Subsidies HVAC', 'Subsidies PV'], dtype='float')
|
||||||
|
|
||||||
|
def calculate_capital_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate capital cost
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
|
||||||
|
surface_opaque = 0
|
||||||
|
surface_transparent = 0
|
||||||
|
surface_roof = 0
|
||||||
|
surface_ground = 0
|
||||||
|
capital_cost_pv = 0
|
||||||
|
capital_cost_opaque = 0
|
||||||
|
capital_cost_ground = 0
|
||||||
|
capital_cost_transparent = 0
|
||||||
|
capital_cost_roof = 0
|
||||||
|
capital_cost_heating_equipment = 0
|
||||||
|
capital_cost_cooling_equipment = 0
|
||||||
|
capital_cost_distribution_equipment = 0
|
||||||
|
capital_cost_other_hvac_ahu = 0
|
||||||
|
capital_cost_lighting = 0
|
||||||
|
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
|
||||||
|
for internal_zone in building.internal_zones:
|
||||||
|
for thermal_zone in internal_zone.thermal_zones:
|
||||||
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
||||||
|
if thermal_boundary.type == 'Ground':
|
||||||
|
surface_ground += thermal_boundary.opaque_area
|
||||||
|
elif thermal_boundary.type == 'Roof':
|
||||||
|
surface_roof += thermal_boundary.opaque_area
|
||||||
|
elif thermal_boundary.type == 'Wall':
|
||||||
|
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
|
||||||
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
||||||
|
|
||||||
|
chapters = archetype.capital_cost
|
||||||
|
|
||||||
|
peak_heating = building.heating_peak_load[cte.YEAR].values[0]/1000
|
||||||
|
peak_cooling = building.cooling_peak_load[cte.YEAR].values[0]/1000
|
||||||
|
# todo: change area pv when the variable exists
|
||||||
|
roof_area = 0
|
||||||
|
for roof in building.roofs:
|
||||||
|
roof_area += roof.solid_polygon.area
|
||||||
|
surface_pv = roof_area * 0.5
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
|
||||||
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
|
||||||
|
|
||||||
|
self._yearly_capital_costs.fillna(0, inplace=True)
|
||||||
|
if self._retrofitting_scenario in (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
chapter = chapters.chapter('B_shell')
|
||||||
|
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
||||||
|
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
||||||
|
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||||
|
capital_cost_ground = surface_ground * chapter.item('B10_superstructure').refurbishment[0]
|
||||||
|
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0]['B2020_transparent'] = capital_cost_transparent * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0]['B10_superstructure'] = capital_cost_ground * (1-PERCENTAGE_CREDIT)
|
||||||
|
|
||||||
|
|
||||||
|
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
chapter = chapters.chapter('D_services')
|
||||||
|
capital_cost_pv = surface_pv * chapter.item('D301010_photovoltaic_system').initial_investment[0]
|
||||||
|
self._yearly_capital_costs.loc[0]['D301010_photovoltaic_system'] = capital_cost_pv
|
||||||
|
capital_cost_heating_equipment = (
|
||||||
|
peak_heating * chapter.item('D3020_heat_generating_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_cooling_equipment = (
|
||||||
|
peak_cooling * chapter.item('D3030_cooling_generation_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_distribution_equipment = (
|
||||||
|
peak_cooling * chapter.item('D3040_distribution_systems').initial_investment[0]
|
||||||
|
)
|
||||||
|
capital_cost_other_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').initial_investment[0]
|
||||||
|
capital_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').initial_investment[0]
|
||||||
|
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3020_heat_generating_systems'] = capital_cost_heating_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3030_cooling_generation_systems'] = capital_cost_cooling_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = capital_cost_distribution_equipment * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = capital_cost_other_hvac_ahu * (1-PERCENTAGE_CREDIT)
|
||||||
|
self._yearly_capital_costs.loc[0, 'D5020_lighting_and_branch_wiring'] = capital_cost_lighting * (1-PERCENTAGE_CREDIT)
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years):
|
||||||
|
chapter = chapters.chapter('D_services')
|
||||||
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_opaque * (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'B2020_transparent'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_transparent * (PERCENTAGE_CREDIT)
|
||||||
|
)
|
||||||
|
self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,capital_cost_roof
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'B10_superstructure'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_ground * (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] = -npf.pmt(INTEREST_RATE,CREDIT_YEARS,
|
||||||
|
capital_cost_heating_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_cooling_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_distribution_equipment
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_other_hvac_ahu
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] = -npf.pmt(INTEREST_RATE, CREDIT_YEARS,
|
||||||
|
capital_cost_lighting
|
||||||
|
* (PERCENTAGE_CREDIT))
|
||||||
|
if (year % chapter.item('D3020_heat_generating_systems').lifetime) == 0:
|
||||||
|
reposition_cost_heating_equipment = peak_heating * chapter.item('D3020_heat_generating_systems').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3020_heat_generating_systems'] += reposition_cost_heating_equipment
|
||||||
|
|
||||||
|
if (year % chapter.item('D3030_cooling_generation_systems').lifetime) == 0:
|
||||||
|
reposition_cost_cooling_equipment = peak_cooling \
|
||||||
|
* chapter.item('D3030_cooling_generation_systems').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3030_cooling_generation_systems'] += reposition_cost_cooling_equipment
|
||||||
|
|
||||||
|
if (year % chapter.item('D3080_other_hvac_ahu').lifetime) == 0:
|
||||||
|
reposition_cost_hvac_ahu = peak_cooling * chapter.item('D3080_other_hvac_ahu').reposition[0] * costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D3080_other_hvac_ahu'] = reposition_cost_hvac_ahu
|
||||||
|
|
||||||
|
if (year % chapter.item('D5020_lighting_and_branch_wiring').lifetime) == 0:
|
||||||
|
reposition_cost_lighting = total_floor_area * chapter.item('D5020_lighting_and_branch_wiring').reposition[0] \
|
||||||
|
* costs_increase
|
||||||
|
self._yearly_capital_costs.loc[year, 'D5020_lighting_and_branch_wiring'] += reposition_cost_lighting
|
||||||
|
|
||||||
|
if self._retrofitting_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||||
|
if (year % chapter.item('D301010_photovoltaic_system').lifetime) == 0:
|
||||||
|
self._yearly_capital_costs.loc[year]['D301010_photovoltaic_system'] += surface_pv \
|
||||||
|
* chapter.item(
|
||||||
|
'D301010_photovoltaic_system').reposition[0] * costs_increase
|
||||||
|
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
|
||||||
|
capital_cost_hvac = (
|
||||||
|
capital_cost_heating_equipment +
|
||||||
|
capital_cost_cooling_equipment +
|
||||||
|
capital_cost_distribution_equipment +
|
||||||
|
capital_cost_other_hvac_ahu + capital_cost_lighting
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = (
|
||||||
|
capital_cost_skin * archetype.income.construction_subsidy/100
|
||||||
|
)
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * archetype.income.hvac_subsidy/100
|
||||||
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * archetype.income.photovoltaic_subsidy/100
|
||||||
|
self._yearly_capital_incomes.fillna(0, inplace=True)
|
||||||
|
return self._yearly_capital_costs, self._yearly_capital_incomes
|
||||||
|
|
||||||
|
def calculate_end_of_life_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate end of life costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
archetype = self._archetype
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
if year == self._number_of_years:
|
||||||
|
self._yearly_end_of_life_costs.at[
|
||||||
|
year, 'End_of_life_costs'] = total_floor_area * archetype.end_of_life_cost * price_increase
|
||||||
|
self._yearly_end_of_life_costs.fillna(0, inplace=True)
|
||||||
|
return self._yearly_end_of_life_costs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def calculate_total_operational_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate total operational costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
total_floor_area = self._total_floor_area
|
||||||
|
factor_residential = total_floor_area / 80
|
||||||
|
# todo: split the heating between fuels
|
||||||
|
fixed_gas_cost_year_0 = 0
|
||||||
|
variable_gas_cost_year_0 = 0
|
||||||
|
electricity_heating = 0
|
||||||
|
domestic_hot_water_electricity = 0
|
||||||
|
if self._fuel_type == 1:
|
||||||
|
fixed_gas_cost_year_0 = archetype.operational_cost.fuels[1].fixed_monthly * 12 * factor_residential
|
||||||
|
variable_gas_cost_year_0 = (
|
||||||
|
(building.heating_consumption[cte.YEAR][0] + building.domestic_hot_water_consumption[cte.YEAR][0]) / 1000 *
|
||||||
|
archetype.operational_cost.fuels[1].variable[0]
|
||||||
|
)
|
||||||
|
if self._fuel_type == 0:
|
||||||
|
electricity_heating = building.heating_consumption[cte.YEAR][0] / 1000
|
||||||
|
domestic_hot_water_electricity = building.domestic_hot_water_consumption[cte.YEAR][0] / 1000
|
||||||
|
|
||||||
|
electricity_cooling = building.cooling_consumption[cte.YEAR][0] / 1000
|
||||||
|
electricity_lighting = building.lighting_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||||
|
electricity_plug_loads = building.appliances_electrical_demand[cte.YEAR]['insel meb'] / 1000
|
||||||
|
electricity_distribution = 0
|
||||||
|
total_electricity_consumption = (
|
||||||
|
electricity_heating + electricity_cooling + electricity_lighting + domestic_hot_water_electricity +
|
||||||
|
electricity_plug_loads + electricity_distribution
|
||||||
|
)
|
||||||
|
|
||||||
|
# todo: change when peak electricity demand is coded. Careful with factor residential
|
||||||
|
peak_electricity_demand = 100 # self._peak_electricity_demand
|
||||||
|
variable_electricity_cost_year_0 = total_electricity_consumption * archetype.operational_cost.fuels[0].variable[0]
|
||||||
|
peak_electricity_cost_year_0 = peak_electricity_demand * archetype.operational_cost.fuels[0].fixed_power * 12
|
||||||
|
monthly_electricity_cost_year_0 = archetype.operational_cost.fuels[0].fixed_monthly * 12 * factor_residential
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
||||||
|
price_increase_peak_electricity = math.pow(1 + self._electricity_peak_index, year)
|
||||||
|
price_increase_gas = math.pow(1 + self._gas_price_index, year)
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_peak'] = (
|
||||||
|
peak_electricity_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_electricity_monthly'] = (
|
||||||
|
monthly_electricity_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_electricity'] = float(
|
||||||
|
variable_electricity_cost_year_0 * price_increase_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Fixed_costs_gas'] = fixed_gas_cost_year_0 * price_increase_gas
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
||||||
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.at[year, 'Variable_costs_gas'] = (
|
||||||
|
variable_gas_cost_year_0 * price_increase_peak_electricity
|
||||||
|
)
|
||||||
|
self._yearly_operational_costs.fillna(0, inplace=True)
|
||||||
|
|
||||||
|
return self._yearly_operational_costs
|
||||||
|
|
||||||
|
def calculate_total_operational_incomes(self):
|
||||||
|
"""
|
||||||
|
Calculate total operational incomes
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
if cte.YEAR not in building.onsite_electrical_production:
|
||||||
|
onsite_electricity_production = 0
|
||||||
|
else:
|
||||||
|
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]/1000
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
price_increase_electricity = math.pow(1 + self._electricity_price_index, year)
|
||||||
|
# todo: check the adequate assignation of price. Pilar
|
||||||
|
price_export = 0.075 # archetype.income.electricity_export
|
||||||
|
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
|
||||||
|
onsite_electricity_production * price_export * price_increase_electricity
|
||||||
|
)
|
||||||
|
|
||||||
|
self._yearly_operational_incomes.fillna(0, inplace=True)
|
||||||
|
return self._yearly_operational_incomes
|
||||||
|
|
||||||
|
def calculate_total_maintenance_costs(self):
|
||||||
|
"""
|
||||||
|
Calculate total maintenance costs
|
||||||
|
:return: pd.DataFrame
|
||||||
|
"""
|
||||||
|
building = self._building
|
||||||
|
archetype = self._archetype
|
||||||
|
# todo: change area pv when the variable exists
|
||||||
|
roof_area = 0
|
||||||
|
for roof in building.roofs:
|
||||||
|
roof_area += roof.solid_polygon.area
|
||||||
|
surface_pv = roof_area * 0.5
|
||||||
|
|
||||||
|
peak_heating = building.heating_peak_load[cte.YEAR][cte.HEATING_PEAK_LOAD][0]
|
||||||
|
peak_cooling = building.cooling_peak_load[cte.YEAR][cte.COOLING_PEAK_LOAD][0]
|
||||||
|
|
||||||
|
maintenance_heating_0 = peak_heating * archetype.operational_cost.maintenance_heating
|
||||||
|
maintenance_cooling_0 = peak_cooling * archetype.operational_cost.maintenance_cooling
|
||||||
|
maintenance_pv_0 = surface_pv * archetype.operational_cost.maintenance_pv
|
||||||
|
|
||||||
|
for year in range(1, self._number_of_years + 1):
|
||||||
|
costs_increase = math.pow(1 + self._consumer_price_index, year)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'Heating_maintenance'] = (
|
||||||
|
maintenance_heating_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'Cooling_maintenance'] = (
|
||||||
|
maintenance_cooling_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.loc[year, 'PV_maintenance'] = (
|
||||||
|
maintenance_pv_0 * costs_increase
|
||||||
|
)
|
||||||
|
self._yearly_maintenance_costs.fillna(0, inplace=True)
|
||||||
|
return self._yearly_maintenance_costs
|
Loading…
Reference in New Issue
Block a user