418 lines
21 KiB
Python
418 lines
21 KiB
Python
"""
|
|
Capital costs module
|
|
SPDX - License - Identifier: LGPL - 3.0 - or -later
|
|
Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@concordia.ca
|
|
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
|
|
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
|
|
"""
|
|
import math
|
|
|
|
import pandas as pd
|
|
import numpy_financial as npf
|
|
from hub.city_model_structure.building import Building
|
|
import hub.helpers.constants as cte
|
|
from costing_package.configuration import Configuration
|
|
from costing_package.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
|
|
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
|
|
from costing_package.cost_base import CostBase
|
|
|
|
|
|
class CapitalCosts(CostBase):
|
|
"""
|
|
Capital costs class
|
|
"""
|
|
|
|
def __init__(self, building: Building, configuration: Configuration):
|
|
super().__init__(building, configuration)
|
|
self._yearly_capital_costs = pd.DataFrame(
|
|
index=self._rng,
|
|
columns=[
|
|
'B2010_opaque_walls',
|
|
'B2020_transparent',
|
|
'B3010_opaque_roof',
|
|
'B1010_superstructure',
|
|
'D2010_photovoltaic_system',
|
|
'D3020_simultaneous_heat_and_cooling_generating_systems',
|
|
'D3030_heating_systems',
|
|
'D3040_cooling_systems',
|
|
'D3050_distribution_systems',
|
|
'D3060_other_hvac_ahu',
|
|
'D3070_storage_systems',
|
|
'D40_dhw',
|
|
],
|
|
dtype='float'
|
|
)
|
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = 0
|
|
self._yearly_capital_costs.loc[0, 'B2020_transparent'] = 0
|
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
|
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3060_other_hvac_ahu'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = 0
|
|
self._yearly_capital_costs.loc[0, 'D40_dhw'] = 0
|
|
|
|
self._yearly_capital_incomes = pd.DataFrame(
|
|
index=self._rng,
|
|
columns=[
|
|
'Subsidies construction',
|
|
'Subsidies HVAC',
|
|
'Subsidies PV'
|
|
],
|
|
dtype='float'
|
|
)
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = 0
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = 0
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = 0
|
|
self._yearly_capital_costs.fillna(0, inplace=True)
|
|
self._own_capital = 1 - self._configuration.percentage_credit
|
|
self._surface_pv = 0
|
|
for roof in self._building.roofs:
|
|
self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
|
|
|
|
for roof in self._building.roofs:
|
|
if roof.installed_solar_collector_area is not None:
|
|
self._surface_pv += roof.installed_solar_collector_area
|
|
else:
|
|
self._surface_pv += roof.solid_polygon.area * roof.solar_collectors_area_reduction_factor
|
|
def calculate(self) -> tuple[pd.DataFrame, pd.DataFrame]:
|
|
self.skin_capital_cost()
|
|
self.energy_system_capital_cost()
|
|
self.skin_yearly_capital_costs()
|
|
self.yearly_energy_system_costs()
|
|
self.yearly_incomes()
|
|
return self._yearly_capital_costs, self._yearly_capital_incomes
|
|
|
|
def skin_capital_cost(self):
|
|
"""
|
|
calculating skin costs
|
|
:return:
|
|
"""
|
|
surface_opaque = 0
|
|
surface_transparent = 0
|
|
surface_roof = 0
|
|
surface_ground = 0
|
|
|
|
for thermal_zone in self._building.thermal_zones_from_internal_zones:
|
|
for thermal_boundary in thermal_zone.thermal_boundaries:
|
|
if thermal_boundary.type == 'Ground':
|
|
surface_ground += thermal_boundary.opaque_area
|
|
elif thermal_boundary.type == 'Roof':
|
|
surface_roof += thermal_boundary.opaque_area
|
|
elif thermal_boundary.type == 'Wall':
|
|
surface_opaque += thermal_boundary.opaque_area * (1 - thermal_boundary.window_ratio)
|
|
surface_transparent += thermal_boundary.opaque_area * thermal_boundary.window_ratio
|
|
|
|
chapter = self._capital_costs_chapter.chapter('B_shell')
|
|
capital_cost_opaque = surface_opaque * chapter.item('B2010_opaque_walls').refurbishment[0]
|
|
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
|
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
|
capital_cost_ground = surface_ground * chapter.item('B1010_superstructure').refurbishment[0]
|
|
if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT):
|
|
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital
|
|
self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital
|
|
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital
|
|
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = capital_cost_ground * self._own_capital
|
|
capital_cost_skin = capital_cost_opaque + capital_cost_ground + capital_cost_transparent + capital_cost_roof
|
|
return capital_cost_opaque, capital_cost_transparent, capital_cost_roof, capital_cost_ground, capital_cost_skin
|
|
|
|
def skin_yearly_capital_costs(self):
|
|
skin_capital_cost = self.skin_capital_cost()
|
|
for year in range(1, self._configuration.number_of_years):
|
|
self._yearly_capital_costs.loc[year, 'B2010_opaque_walls'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
skin_capital_cost[0] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'B2020_transparent'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
skin_capital_cost[1] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'B3010_opaque_roof'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
skin_capital_cost[2] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'B1010_superstructure'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
skin_capital_cost[3] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
|
|
def energy_system_capital_cost(self):
|
|
chapter = self._capital_costs_chapter.chapter('D_services')
|
|
system_components, component_categories, component_sizes = self.system_components()
|
|
capital_cost_heating_and_cooling_equipment = 0
|
|
capital_cost_heating_equipment = 0
|
|
capital_cost_cooling_equipment = 0
|
|
capital_cost_domestic_hot_water_equipment = 0
|
|
capital_cost_energy_storage_equipment = 0
|
|
capital_cost_distribution_equipment = 0
|
|
capital_cost_lighting = 0
|
|
capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
|
|
for (i, component) in enumerate(system_components):
|
|
if component_categories[i] == 'multi_generation':
|
|
capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
|
elif component_categories[i] == 'heating':
|
|
capital_cost_heating_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
|
elif component_categories[i] == 'cooling':
|
|
capital_cost_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
|
elif component_categories[i] == 'dhw':
|
|
capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
|
|
component_sizes[i]
|
|
elif component_categories[i] == 'distribution':
|
|
capital_cost_distribution_equipment += chapter.item(component).initial_investment[0] * \
|
|
component_sizes[i]
|
|
else:
|
|
capital_cost_energy_storage_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
|
|
|
if self._configuration.retrofit_scenario in (SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, PV):
|
|
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv
|
|
if (self._configuration.retrofit_scenario in
|
|
(SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT)):
|
|
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
|
capital_cost_heating_and_cooling_equipment * self._own_capital)
|
|
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = (
|
|
capital_cost_heating_equipment * self._own_capital)
|
|
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = (
|
|
capital_cost_cooling_equipment * self._own_capital)
|
|
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = (
|
|
capital_cost_distribution_equipment * self._own_capital)
|
|
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = (
|
|
capital_cost_energy_storage_equipment * self._own_capital)
|
|
self._yearly_capital_costs.loc[0, 'D40_dhw'] = (
|
|
capital_cost_domestic_hot_water_equipment * self._own_capital)
|
|
capital_cost_hvac = (capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment +
|
|
capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment)
|
|
return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_heating_equipment,
|
|
capital_cost_distribution_equipment, capital_cost_cooling_equipment, capital_cost_energy_storage_equipment,
|
|
capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
|
|
|
|
def yearly_energy_system_costs(self):
|
|
chapter = self._capital_costs_chapter.chapter('D_services')
|
|
system_investment_costs = self.energy_system_capital_cost()
|
|
system_components, component_categories, component_sizes = self.system_components()
|
|
pv = False
|
|
for energy_system in self._building.energy_systems:
|
|
for generation_system in energy_system.generation_systems:
|
|
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
|
pv = True
|
|
for year in range(1, self._configuration.number_of_years):
|
|
costs_increase = math.pow(1 + self._configuration.consumer_price_index, year)
|
|
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[0] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[1] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[2] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[3] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[4] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[5] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
|
|
-npf.pmt(
|
|
self._configuration.interest_rate,
|
|
self._configuration.credit_years,
|
|
system_investment_costs[6] * self._configuration.percentage_credit
|
|
)
|
|
)
|
|
if self._configuration.retrofit_scenario not in (SKIN_RETROFIT, PV):
|
|
for (i, component) in enumerate(system_components):
|
|
if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1):
|
|
if component_categories[i] == 'multi_generation':
|
|
reposition_cost_heating_and_cooling_equipment = (chapter.item(component).reposition[0] *
|
|
component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] += (
|
|
reposition_cost_heating_and_cooling_equipment)
|
|
elif component_categories[i] == 'heating':
|
|
reposition_cost_heating_equipment = (chapter.item(component).reposition[0] *
|
|
component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] += (
|
|
reposition_cost_heating_equipment)
|
|
elif component_categories[i] == 'cooling':
|
|
reposition_cost_cooling_equipment = (chapter.item(component).reposition[0] *
|
|
component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] += (
|
|
reposition_cost_cooling_equipment)
|
|
elif component_categories[i] == 'dhw':
|
|
reposition_cost_domestic_hot_water_equipment = (
|
|
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
|
|
elif component_categories[i] == 'distribution':
|
|
reposition_cost_distribution_equipment = (
|
|
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] += (
|
|
reposition_cost_distribution_equipment)
|
|
else:
|
|
reposition_cost_energy_storage_equipment = (
|
|
chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase)
|
|
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] += reposition_cost_energy_storage_equipment
|
|
if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
|
|
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
|
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
|
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
|
)
|
|
elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV,
|
|
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
|
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
|
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
|
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
|
)
|
|
|
|
def system_components(self):
|
|
system_components = []
|
|
component_categories = []
|
|
sizes = []
|
|
energy_systems = self._building.energy_systems
|
|
for energy_system in energy_systems:
|
|
demand_types = energy_system.demand_types
|
|
generation_systems = energy_system.generation_systems
|
|
distribution_systems = energy_system.distribution_systems
|
|
for generation_system in generation_systems:
|
|
if generation_system.system_type != cte.PHOTOVOLTAIC:
|
|
heating_capacity = generation_system.nominal_heat_output or 0
|
|
cooling_capacity = generation_system.nominal_cooling_output or 0
|
|
installed_capacity = max(heating_capacity, cooling_capacity) / 1000
|
|
if cte.DOMESTIC_HOT_WATER in demand_types and cte.HEATING not in demand_types:
|
|
component_categories.append('dhw')
|
|
sizes.append(installed_capacity)
|
|
if generation_system.system_type == cte.HEAT_PUMP:
|
|
system_components.append(self.heat_pump_type(generation_system, domestic_how_water=True))
|
|
elif generation_system.system_type == cte.BOILER and generation_system.fuel_type == cte.ELECTRICITY:
|
|
system_components.append(self.boiler_type(generation_system))
|
|
else:
|
|
system_components.append('D302010_template_heat')
|
|
elif cte.HEATING in demand_types:
|
|
if cte.COOLING in demand_types and generation_system.fuel_type == cte.ELECTRICITY:
|
|
component_categories.append('multi_generation')
|
|
else:
|
|
component_categories.append('heating')
|
|
sizes.append(installed_capacity)
|
|
if generation_system.system_type == cte.HEAT_PUMP:
|
|
item_type = self.heat_pump_type(generation_system)
|
|
system_components.append(item_type)
|
|
elif generation_system.system_type == cte.BOILER:
|
|
item_type = self.boiler_type(generation_system)
|
|
system_components.append(item_type)
|
|
else:
|
|
if cooling_capacity > heating_capacity:
|
|
system_components.append('D302090_template_cooling')
|
|
else:
|
|
system_components.append('D302010_template_heat')
|
|
elif cte.COOLING in demand_types:
|
|
component_categories.append('cooling')
|
|
sizes.append(installed_capacity)
|
|
if generation_system.system_type == cte.HEAT_PUMP:
|
|
item_type = self.heat_pump_type(generation_system)
|
|
system_components.append(item_type)
|
|
else:
|
|
system_components.append('D302090_template_cooling')
|
|
if generation_system.energy_storage_systems is not None:
|
|
energy_storage_systems = generation_system.energy_storage_systems
|
|
for storage_system in energy_storage_systems:
|
|
if storage_system.type_energy_stored == 'thermal':
|
|
component_categories.append('thermal storage')
|
|
sizes.append(storage_system.volume or 0)
|
|
system_components.append('D306010_storage_tank')
|
|
if distribution_systems is not None:
|
|
for distribution_system in distribution_systems:
|
|
component_categories.append('distribution')
|
|
sizes.append(self._building.cooling_peak_load[cte.YEAR][0] / 1000)
|
|
system_components.append('D3040_distribution_systems')
|
|
return system_components, component_categories, sizes
|
|
|
|
def yearly_incomes(self):
|
|
capital_cost_skin = self.skin_capital_cost()[-1]
|
|
system_investment_cost = self.energy_system_capital_cost()
|
|
capital_cost_hvac = system_investment_cost[-1]
|
|
capital_cost_pv = system_investment_cost[0]
|
|
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies construction'] = (
|
|
capital_cost_skin * self._archetype.income.construction_subsidy/100
|
|
)
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies HVAC'] = capital_cost_hvac * self._archetype.income.hvac_subsidy/100
|
|
self._yearly_capital_incomes.loc[0, 'Subsidies PV'] = capital_cost_pv * self._archetype.income.photovoltaic_subsidy/100
|
|
self._yearly_capital_incomes.fillna(0, inplace=True)
|
|
|
|
@staticmethod
|
|
def heat_pump_type(generation_system, domestic_how_water=False):
|
|
source_medium = generation_system.source_medium
|
|
supply_medium = generation_system.supply_medium
|
|
if domestic_how_water:
|
|
heat_pump_item = 'D4010_hot_water_heat_pump'
|
|
else:
|
|
if source_medium == cte.AIR and supply_medium == cte.WATER:
|
|
heat_pump_item = 'D302020_air_to_water_heat_pump'
|
|
elif source_medium == cte.AIR and supply_medium == cte.AIR:
|
|
heat_pump_item = 'D302050_air_to_air_heat_pump'
|
|
elif source_medium == cte.GROUND and supply_medium == cte.WATER:
|
|
heat_pump_item = 'D302030_ground_to_water_heat_pump'
|
|
elif source_medium == cte.GROUND and supply_medium == cte.AIR:
|
|
heat_pump_item = 'D302100_ground_to_air_heat_pump'
|
|
elif source_medium == cte.WATER and supply_medium == cte.WATER:
|
|
heat_pump_item = 'D302040_water_to_water_heat_pump'
|
|
elif source_medium == cte.WATER and supply_medium == cte.AIR:
|
|
heat_pump_item = 'D302110_water_to_air_heat_pump'
|
|
else:
|
|
heat_pump_item = 'D302010_template_heat'
|
|
return heat_pump_item
|
|
|
|
@staticmethod
|
|
def boiler_type(generation_system):
|
|
fuel = generation_system.fuel_type
|
|
if fuel == cte.ELECTRICITY:
|
|
boiler_item = 'D302080_electrical_boiler'
|
|
elif fuel == cte.GAS:
|
|
boiler_item = 'D302070_natural_gas_boiler'
|
|
else:
|
|
boiler_item = 'D302010_template_heat'
|
|
return boiler_item
|
|
|
|
|
|
|
|
|