85 lines
4.8 KiB
Python
85 lines
4.8 KiB
Python
|
import csv
|
||
|
from pathlib import Path
|
||
|
from building_modelling.ep_run_enrich import energy_plus_workflow
|
||
|
from energy_system_modelling_package.energy_system_modelling_factories.energy_system_sizing_factory import \
|
||
|
EnergySystemsSizingFactory
|
||
|
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_boiler_tes_heating import \
|
||
|
HeatPumpBoilerTesHeating
|
||
|
from hub.imports.geometry_factory import GeometryFactory
|
||
|
from hub.helpers.dictionaries import Dictionaries
|
||
|
from hub.imports.construction_factory import ConstructionFactory
|
||
|
from hub.imports.usage_factory import UsageFactory
|
||
|
from hub.imports.weather_factory import WeatherFactory
|
||
|
import hub.helpers.constants as cte
|
||
|
from building_modelling.geojson_creator import process_geojson
|
||
|
from energy_system_modelling_package import random_assignation
|
||
|
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||
|
|
||
|
# Specify the GeoJSON file path
|
||
|
input_files_path = (Path(__file__).parent / 'input_files')
|
||
|
input_files_path.mkdir(parents=True, exist_ok=True)
|
||
|
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.00006)
|
||
|
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||
|
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||
|
output_path.mkdir(parents=True, exist_ok=True)
|
||
|
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||
|
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||
|
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||
|
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||
|
sra_output_path = output_path / 'sra_outputs'
|
||
|
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||
|
cost_analysis_output_path = output_path / 'cost_analysis'
|
||
|
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||
|
city = GeometryFactory(file_type='geojson',
|
||
|
path=geojson_file_path,
|
||
|
height_field='height',
|
||
|
year_of_construction_field='year_of_construction',
|
||
|
function_field='function',
|
||
|
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||
|
ConstructionFactory('nrcan', city).enrich()
|
||
|
UsageFactory('nrcan', city).enrich()
|
||
|
WeatherFactory('epw', city).enrich()
|
||
|
energy_plus_workflow(city, energy_plus_output_path)
|
||
|
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||
|
EnergySystemsFactory('montreal_future', city).enrich()
|
||
|
EnergySystemsSizingFactory('peak_load_sizing', city).enrich()
|
||
|
hp = city.buildings[0].energy_systems[1].generation_systems[1]
|
||
|
boiler = city.buildings[0].energy_systems[1].generation_systems[0]
|
||
|
tes = city.buildings[0].energy_systems[1].generation_systems[0].energy_storage_systems[0]
|
||
|
# Step 1: Calculate daily demands
|
||
|
daily_demands = [sum(city.buildings[0].heating_demand[cte.HOUR][i:i + 24]) for i in
|
||
|
range(0, len(city.buildings[0].heating_demand[cte.HOUR]), 24)]
|
||
|
# Step 2: Find the day with maximum demand
|
||
|
max_day_index = daily_demands.index(max(daily_demands))
|
||
|
# Step 3: Extract the hourly demands for the day before, the day with max demand, and the day after
|
||
|
# Ensure you don't go out of bounds if max_day_index is 0 or the last day
|
||
|
if max_day_index > 0 and max_day_index < len(daily_demands) - 1:
|
||
|
start_index = (max_day_index - 1) * 24
|
||
|
end_index = (max_day_index + 2) * 24
|
||
|
three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index]
|
||
|
elif max_day_index == 0: # If max is the first day, just include day 1 and day 2
|
||
|
start_index = max_day_index * 24
|
||
|
end_index = (max_day_index + 2) * 24
|
||
|
three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index]
|
||
|
else: # If max is the last day, just include the last two days
|
||
|
start_index = (max_day_index - 1) * 24
|
||
|
end_index = len(city.buildings[0].heating_demand[cte.HOUR])
|
||
|
three_day_demands = city.buildings[0].heating_demand[cte.HOUR][start_index:end_index]
|
||
|
results = HeatPumpBoilerTesHeating(hp=hp,
|
||
|
boiler=boiler,
|
||
|
tes=tes,
|
||
|
hourly_heating_demand_joules=three_day_demands,
|
||
|
heating_peak_load_watts=max(three_day_demands),
|
||
|
upper_limit_tes=55,
|
||
|
outdoor_temperature=city.buildings[0].external_temperature[cte.HOUR],
|
||
|
dt=900).simulation()
|
||
|
heating_eui = city.buildings[0].heating_demand[cte.YEAR][0] / (
|
||
|
city.buildings[0].thermal_zones_from_internal_zones[0].total_floor_area * 3.6e6)
|
||
|
file_name = f'energy_system_simulation_results_{city.buildings[0].name}.csv'
|
||
|
with open(simulation_results_path / file_name, 'w', newline='') as csvfile:
|
||
|
output_file = csv.writer(csvfile)
|
||
|
# Write header
|
||
|
output_file.writerow(results.keys())
|
||
|
# Write data
|
||
|
output_file.writerows(zip(*results.values()))
|