energy_system_modelling_wor.../central.py

76 lines
3.9 KiB
Python
Raw Normal View History

import pandas as pd
from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
# Specify the GeoJSON file path
location = [45.49034212153445, -73.61435648647083]
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich()
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
pv_sizing_simulation = PVSizingSimulation(building,
solar_angles,
tilt_angle=45,
module_height=1,
module_width=2,
ghi=ghi)
for building in city.buildings:
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
costs.to_csv(output_path / f'{building.name}_lcc.csv')
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
output_path / f'{building.name}_cc.csv')
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
# to_csv(output_path / f'{building.name}_op.csv'))
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
# output_path / f'{building.name}_m.csv')
print(building.name)
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
print(investment_cost)
print(lcc_capex)