feat: central vs decentral rough comparison
This commit is contained in:
parent
0471b6d4ba
commit
c0f7b206b8
75
central.py
Normal file
75
central.py
Normal file
@ -0,0 +1,75 @@
|
||||
import pandas as pd
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
# Specify the GeoJSON file path
|
||||
|
||||
location = [45.49034212153445, -73.61435648647083]
|
||||
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
|
||||
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
pv_sizing_simulation = PVSizingSimulation(building,
|
||||
solar_angles,
|
||||
tilt_angle=45,
|
||||
module_height=1,
|
||||
module_width=2,
|
||||
ghi=ghi)
|
||||
|
||||
for building in city.buildings:
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
# to_csv(output_path / f'{building.name}_op.csv'))
|
||||
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
# output_path / f'{building.name}_m.csv')
|
||||
print(building.name)
|
||||
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
|
||||
print(investment_cost)
|
||||
print(lcc_capex)
|
78
main.py
78
main.py
@ -0,0 +1,78 @@
|
||||
import pandas as pd
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
# Specify the GeoJSON file path
|
||||
location = [45.49034212153445, -73.61435648647083]
|
||||
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
energy_plus_workflow(city)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
|
||||
# ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
# pv_sizing_simulation = PVSizingSimulation(building,
|
||||
# solar_angles,
|
||||
# tilt_angle=45,
|
||||
# module_height=1,
|
||||
# module_width=2,
|
||||
# ghi=ghi)
|
||||
sum_floor_area = 0
|
||||
for building in city.buildings:
|
||||
for thermal_zone in building.thermal_zones_from_internal_zones:
|
||||
sum_floor_area += thermal_zone.total_floor_area
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
# costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
# to_csv(output_path / f'{building.name}_op.csv'))
|
||||
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
# output_path / f'{building.name}_m.csv')
|
||||
print(building.name)
|
||||
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
|
||||
print(investment_cost)
|
||||
print(lcc_capex)
|
||||
|
||||
print(sum_floor_area)
|
@ -57,14 +57,15 @@ class TotalMaintenanceCosts(CostBase):
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
else:
|
||||
cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
else:
|
||||
cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
@ -94,7 +95,7 @@ class TotalMaintenanceCosts(CostBase):
|
||||
else:
|
||||
dhw_equipments['general_heating_equipment'] = generation_system.nominal_heat_output / 1000
|
||||
|
||||
print(dhw_equipments)
|
||||
|
||||
for heating_equipment in heating_equipments:
|
||||
component = self.search_hvac_equipment(heating_equipment)
|
||||
maintenance_cost = component.maintenance[0]
|
||||
|
@ -30,11 +30,11 @@ class Archetype13:
|
||||
heat_pump = self._hvac_system.generation_systems[1]
|
||||
boiler = self._hvac_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def dhw_sizing(self):
|
||||
|
Loading…
Reference in New Issue
Block a user