feat: tests conducted on Lachine
This commit is contained in:
parent
c0f7b206b8
commit
0e3db345be
52
central.py
52
central.py
@ -1,8 +1,6 @@
|
||||
import pandas as pd
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
@ -13,16 +11,13 @@ from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from scripts.costs.constants import SYSTEM_RETROFIT_AND_PV
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
# Specify the GeoJSON file path
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
location = [45.49034212153445, -73.61435648647083]
|
||||
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'processed_output -single_building.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
@ -39,37 +34,28 @@ UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
|
||||
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
pv_sizing_simulation = PVSizingSimulation(building,
|
||||
solar_angles,
|
||||
tilt_angle=45,
|
||||
module_height=1,
|
||||
module_width=2,
|
||||
ghi=ghi)
|
||||
|
||||
sum_floor_area = 0
|
||||
buildings_list = []
|
||||
for building in city.buildings:
|
||||
buildings_list.append(building.name)
|
||||
df = pd.DataFrame(columns=['building_name', 'total_floor_area', 'investment_cost', 'lc CAPEX'])
|
||||
df['building_name'] = buildings_list
|
||||
for building in city.buildings:
|
||||
for thermal_zone in building.thermal_zones_from_internal_zones:
|
||||
sum_floor_area += thermal_zone.total_floor_area
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
# to_csv(output_path / f'{building.name}_op.csv'))
|
||||
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
# output_path / f'{building.name}_m.csv')
|
||||
print(building.name)
|
||||
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
investment_cost = costs.loc['global_capital_costs',
|
||||
f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
|
||||
print(investment_cost)
|
||||
print(lcc_capex)
|
||||
df.loc[df['building_name'] == building.name, 'total_floor_area'] = (
|
||||
building.thermal_zones_from_internal_zones[0].total_floor_area)
|
||||
df.loc[df['building_name'] == building.name, 'investment_cost'] = investment_cost
|
||||
df.loc[df['building_name'] == building.name, 'lc CAPEX'] = lcc_capex
|
||||
|
||||
df.to_csv(output_path / 'economic analysis.csv')
|
||||
|
@ -484,7 +484,7 @@ class Building(CityObject):
|
||||
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
|
||||
if monthly_values is None:
|
||||
return None
|
||||
results[cte.MONTH] = [x for x in monthly_values]
|
||||
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
|
||||
return results
|
||||
|
||||
|
50
input_files/processed_output -single_building.geojson
Normal file
50
input_files/processed_output -single_building.geojson
Normal file
@ -0,0 +1,50 @@
|
||||
{
|
||||
"type": "FeatureCollection",
|
||||
"name": "lachine_group_mach_buildings",
|
||||
"crs": {
|
||||
"type": "name",
|
||||
"properties": {
|
||||
"name": "urn:ogc:def:crs:OGC:1.3:CRS84"
|
||||
}
|
||||
},
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"properties": {
|
||||
"name": "1",
|
||||
"address": "",
|
||||
"function": 1000,
|
||||
"height": 23.29,
|
||||
"year_of_construction": 2023
|
||||
},
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.66557613653009,
|
||||
45.43551716511939
|
||||
],
|
||||
[
|
||||
-73.66530891881455,
|
||||
45.43551716511939
|
||||
],
|
||||
[
|
||||
-73.66530891881455,
|
||||
45.43590129058549
|
||||
],
|
||||
[
|
||||
-73.66557613653009,
|
||||
45.43590129058549
|
||||
],
|
||||
[
|
||||
-73.66557613653009,
|
||||
45.43551716511939
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 1
|
||||
}
|
||||
]
|
||||
}
|
2848
input_files/processed_output.geojson
Normal file
2848
input_files/processed_output.geojson
Normal file
File diff suppressed because it is too large
Load Diff
54
main.py
54
main.py
@ -1,78 +1,52 @@
|
||||
import pandas as pd
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.costs.constants import SYSTEM_RETROFIT_AND_PV
|
||||
# Specify the GeoJSON file path
|
||||
location = [45.49034212153445, -73.61435648647083]
|
||||
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005)
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'processed_output -single_building.geojson')
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
energy_plus_workflow(city)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
|
||||
# ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
# pv_sizing_simulation = PVSizingSimulation(building,
|
||||
# solar_angles,
|
||||
# tilt_angle=45,
|
||||
# module_height=1,
|
||||
# module_width=2,
|
||||
# ghi=ghi)
|
||||
sum_floor_area = 0
|
||||
buildings_list = []
|
||||
for building in city.buildings:
|
||||
buildings_list.append(building.name)
|
||||
df = pd.DataFrame(columns=['building_name', 'total_floor_area', 'investment_cost', 'lc CAPEX'])
|
||||
df['building_name'] = buildings_list
|
||||
for building in city.buildings:
|
||||
for thermal_zone in building.thermal_zones_from_internal_zones:
|
||||
sum_floor_area += thermal_zone.total_floor_area
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
# costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
# to_csv(output_path / f'{building.name}_op.csv'))
|
||||
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
# output_path / f'{building.name}_m.csv')
|
||||
print(building.name)
|
||||
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
investment_cost = costs.loc['global_capital_costs',
|
||||
f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
|
||||
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
|
||||
print(investment_cost)
|
||||
print(lcc_capex)
|
||||
df.loc[df['building_name'] == building.name, 'total_floor_area'] = (
|
||||
building.thermal_zones_from_internal_zones[0].total_floor_area)
|
||||
df.loc[df['building_name'] == building.name, 'investment_cost'] = investment_cost
|
||||
df.loc[df['building_name'] == building.name, 'lc CAPEX'] = lcc_capex
|
||||
|
||||
print(sum_floor_area)
|
||||
df.to_csv(output_path / 'economic analysis.csv')
|
||||
|
@ -155,13 +155,12 @@ class CapitalCosts(CostBase):
|
||||
capital_cost_energy_storage_equipment = 0
|
||||
capital_cost_distribution_equipment = 0
|
||||
capital_cost_lighting = 0
|
||||
capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
|
||||
capital_cost_pv = 0
|
||||
for (i, component) in enumerate(system_components):
|
||||
if component_categories[i] == 'generation':
|
||||
capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'dhw':
|
||||
capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
|
||||
component_sizes[i]
|
||||
capital_cost_domestic_hot_water_equipment += 0
|
||||
elif component_categories[i] == 'distribution':
|
||||
capital_cost_distribution_equipment += chapter.item(component).initial_investment[0] * \
|
||||
component_sizes[i]
|
||||
@ -237,7 +236,7 @@ class CapitalCosts(CostBase):
|
||||
reposition_cost_heating_and_cooling_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] += reposition_cost_heating_and_cooling_equipment
|
||||
elif component_categories[i] == 'dhw':
|
||||
reposition_cost_domestic_hot_water_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
reposition_cost_domestic_hot_water_equipment = 0
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
|
||||
elif component_categories[i] == 'distribution':
|
||||
reposition_cost_distribution_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
@ -248,13 +247,13 @@ class CapitalCosts(CostBase):
|
||||
if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
|
||||
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
||||
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
||||
self._surface_pv * 0 * costs_increase
|
||||
)
|
||||
elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV,
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
||||
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
|
||||
self._surface_pv * 0 * costs_increase
|
||||
)
|
||||
|
||||
def system_components(self):
|
||||
|
@ -45,6 +45,8 @@ class Archetype13:
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
if float(dhw_tes.volume) == 0:
|
||||
dhw_tes.volume = 1
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation(self):
|
||||
|
Loading…
Reference in New Issue
Block a user