feat: tests conducted on Lachine

This commit is contained in:
Saeed Ranjbar 2024-06-24 21:35:04 -04:00
parent c0f7b206b8
commit 0e3db345be
7 changed files with 2939 additions and 80 deletions

View File

@ -1,8 +1,6 @@
import pandas as pd
from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
@ -13,16 +11,13 @@ from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
import hub.helpers.constants as cte
from scripts.costs.constants import SYSTEM_RETROFIT_AND_PV
from hub.exports.exports_factory import ExportsFactory
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
# Specify the GeoJSON file path
# Specify the GeoJSON file path
location = [45.49034212153445, -73.61435648647083]
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
file_path = (Path(__file__).parent / 'input_files' / 'processed_output -single_building.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
@ -39,37 +34,28 @@ UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ResultFactory('energy_plus_multiple_buildings', city, output_path).enrich()
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
pv_sizing_simulation = PVSizingSimulation(building,
solar_angles,
tilt_angle=45,
module_height=1,
module_width=2,
ghi=ghi)
sum_floor_area = 0
buildings_list = []
for building in city.buildings:
buildings_list.append(building.name)
df = pd.DataFrame(columns=['building_name', 'total_floor_area', 'investment_cost', 'lc CAPEX'])
df['building_name'] = buildings_list
for building in city.buildings:
for thermal_zone in building.thermal_zones_from_internal_zones:
sum_floor_area += thermal_zone.total_floor_area
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
costs.to_csv(output_path / f'{building.name}_lcc.csv')
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
output_path / f'{building.name}_cc.csv')
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
# to_csv(output_path / f'{building.name}_op.csv'))
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
# output_path / f'{building.name}_m.csv')
print(building.name)
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
investment_cost = costs.loc['global_capital_costs',
f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
print(investment_cost)
print(lcc_capex)
df.loc[df['building_name'] == building.name, 'total_floor_area'] = (
building.thermal_zones_from_internal_zones[0].total_floor_area)
df.loc[df['building_name'] == building.name, 'investment_cost'] = investment_cost
df.loc[df['building_name'] == building.name, 'lc CAPEX'] = lcc_capex
df.to_csv(output_path / 'economic analysis.csv')

View File

@ -484,7 +484,7 @@ class Building(CityObject):
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
if monthly_values is None:
return None
results[cte.MONTH] = [x for x in monthly_values]
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
return results

View File

@ -0,0 +1,50 @@
{
"type": "FeatureCollection",
"name": "lachine_group_mach_buildings",
"crs": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:OGC:1.3:CRS84"
}
},
"features": [
{
"type": "Feature",
"properties": {
"name": "1",
"address": "",
"function": 1000,
"height": 23.29,
"year_of_construction": 2023
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
-73.66557613653009,
45.43551716511939
],
[
-73.66530891881455,
45.43551716511939
],
[
-73.66530891881455,
45.43590129058549
],
[
-73.66557613653009,
45.43590129058549
],
[
-73.66557613653009,
45.43551716511939
]
]
]
},
"id": 1
}
]
}

File diff suppressed because it is too large Load Diff

54
main.py
View File

@ -1,78 +1,52 @@
import pandas as pd
from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
from scripts.costs.constants import SYSTEM_RETROFIT_AND_PV
# Specify the GeoJSON file path
location = [45.49034212153445, -73.61435648647083]
geojson_file = process_geojson(x=location[1], y=location[0], diff=0.0005)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
file_path = (Path(__file__).parent / 'input_files' / 'processed_output -single_building.geojson')
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
energy_plus_workflow(city)
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
for building in city.buildings:
EnergySystemsSimulationFactory('archetype13', building=building, output_path=output_path).enrich()
# ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
# pv_sizing_simulation = PVSizingSimulation(building,
# solar_angles,
# tilt_angle=45,
# module_height=1,
# module_width=2,
# ghi=ghi)
sum_floor_area = 0
buildings_list = []
for building in city.buildings:
buildings_list.append(building.name)
df = pd.DataFrame(columns=['building_name', 'total_floor_area', 'investment_cost', 'lc CAPEX'])
df['building_name'] = buildings_list
for building in city.buildings:
for thermal_zone in building.thermal_zones_from_internal_zones:
sum_floor_area += thermal_zone.total_floor_area
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
# costs.to_csv(output_path / f'{building.name}_lcc.csv')
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
output_path / f'{building.name}_cc.csv')
# (costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
# to_csv(output_path / f'{building.name}_op.csv'))
# costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
# output_path / f'{building.name}_m.csv')
print(building.name)
investment_cost = costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
investment_cost = costs.loc['global_capital_costs',
f'Scenario {SYSTEM_RETROFIT_AND_PV}'].loc[0, 'D3020_heat_and_cooling_generating_systems']
lcc_capex = costs.loc['total_capital_costs_systems', f'Scenario {SYSTEM_RETROFIT_AND_PV}']
print(investment_cost)
print(lcc_capex)
df.loc[df['building_name'] == building.name, 'total_floor_area'] = (
building.thermal_zones_from_internal_zones[0].total_floor_area)
df.loc[df['building_name'] == building.name, 'investment_cost'] = investment_cost
df.loc[df['building_name'] == building.name, 'lc CAPEX'] = lcc_capex
print(sum_floor_area)
df.to_csv(output_path / 'economic analysis.csv')

View File

@ -155,13 +155,12 @@ class CapitalCosts(CostBase):
capital_cost_energy_storage_equipment = 0
capital_cost_distribution_equipment = 0
capital_cost_lighting = 0
capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
capital_cost_pv = 0
for (i, component) in enumerate(system_components):
if component_categories[i] == 'generation':
capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
elif component_categories[i] == 'dhw':
capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
component_sizes[i]
capital_cost_domestic_hot_water_equipment += 0
elif component_categories[i] == 'distribution':
capital_cost_distribution_equipment += chapter.item(component).initial_investment[0] * \
component_sizes[i]
@ -237,7 +236,7 @@ class CapitalCosts(CostBase):
reposition_cost_heating_and_cooling_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] += reposition_cost_heating_and_cooling_equipment
elif component_categories[i] == 'dhw':
reposition_cost_domestic_hot_water_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
reposition_cost_domestic_hot_water_equipment = 0
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
elif component_categories[i] == 'distribution':
reposition_cost_distribution_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
@ -248,13 +247,13 @@ class CapitalCosts(CostBase):
if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
self._surface_pv * 0 * costs_increase
)
elif self._configuration.retrofit_scenario in (PV, SYSTEM_RETROFIT_AND_PV,
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
self._surface_pv * chapter.item('D2010_photovoltaic_system').reposition[0] * costs_increase
self._surface_pv * 0 * costs_increase
)
def system_components(self):

View File

@ -45,6 +45,8 @@ class Archetype13:
dhw_tes = dhw_hp.energy_storage_systems[0]
dhw_tes.volume = round(
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
if float(dhw_tes.volume) == 0:
dhw_tes.volume = 1
return dhw_hp, dhw_tes
def heating_system_simulation(self):