feat: the workflow is organized to separate system models

This commit is contained in:
Saeed Ranjbar 2024-08-26 19:36:23 -04:00
parent 9af87fe482
commit b0e6c7d9ef
63 changed files with 1444 additions and 2334 deletions

View File

@ -6,7 +6,7 @@ import csv
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.imports.results_factory import ResultFactory
sys.path.append('./')
sys.path.append('../energy_system_modelling_package/')
def energy_plus_workflow(city, output_path):

View File

@ -11,10 +11,10 @@ import pandas as pd
import numpy_financial as npf
from hub.city_model_structure.building import Building
import hub.helpers.constants as cte
from scripts.costs.configuration import Configuration
from scripts.costs.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
from scripts.costs.cost_base import CostBase
from costing_package.configuration import Configuration
from costing_package.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
from costing_package.cost_base import CostBase
class CapitalCosts(CostBase):

View File

@ -5,19 +5,18 @@ Copyright © 2023 Project Coder Guille Gutierrez guillermo.gutierrezmorote@conco
Code contributor Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
import datetime
import pandas as pd
import numpy_financial as npf
from hub.city_model_structure.building import Building
from hub.helpers.dictionaries import Dictionaries
from scripts.costs.configuration import Configuration
from scripts.costs.capital_costs import CapitalCosts
from scripts.costs.end_of_life_costs import EndOfLifeCosts
from scripts.costs.total_maintenance_costs import TotalMaintenanceCosts
from scripts.costs.total_operational_costs import TotalOperationalCosts
from scripts.costs.total_operational_incomes import TotalOperationalIncomes
from scripts.costs.constants import CURRENT_STATUS, SKIN_RETROFIT, SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV
from costing_package.configuration import Configuration
from costing_package.capital_costs import CapitalCosts
from costing_package.end_of_life_costs import EndOfLifeCosts
from costing_package.total_maintenance_costs import TotalMaintenanceCosts
from costing_package.total_operational_costs import TotalOperationalCosts
from costing_package.total_operational_incomes import TotalOperationalIncomes
from costing_package.constants import CURRENT_STATUS
import hub.helpers.constants as cte

View File

@ -8,7 +8,7 @@ Code contributor Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
from hub.city_model_structure.building import Building
from scripts.costs.configuration import Configuration
from costing_package.configuration import Configuration
class CostBase:

View File

@ -9,8 +9,8 @@ import math
import pandas as pd
from hub.city_model_structure.building import Building
from scripts.costs.configuration import Configuration
from scripts.costs.cost_base import CostBase
from costing_package.configuration import Configuration
from costing_package.cost_base import CostBase
class EndOfLifeCosts(CostBase):

View File

@ -10,8 +10,8 @@ import pandas as pd
from hub.city_model_structure.building import Building
import hub.helpers.constants as cte
from scripts.costs.configuration import Configuration
from scripts.costs.cost_base import CostBase
from costing_package.configuration import Configuration
from costing_package.cost_base import CostBase
class TotalMaintenanceCosts(CostBase):

View File

@ -10,9 +10,9 @@ import pandas as pd
from hub.city_model_structure.building import Building
import hub.helpers.constants as cte
from scripts.costs.configuration import Configuration
from scripts.costs.cost_base import CostBase
from scripts.costs.peak_load import PeakLoad
from costing_package.configuration import Configuration
from costing_package.cost_base import CostBase
from costing_package.peak_load import PeakLoad
class TotalOperationalCosts(CostBase):

View File

@ -10,8 +10,8 @@ import pandas as pd
from hub.city_model_structure.building import Building
import hub.helpers.constants as cte
from scripts.costs.configuration import Configuration
from scripts.costs.cost_base import CostBase
from costing_package.configuration import Configuration
from costing_package.cost_base import CostBase
class TotalOperationalIncomes(CostBase):

View File

@ -0,0 +1,147 @@
import csv
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_boiler_tes_heating import \
HeatPumpBoilerTesHeating
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_cooling import \
HeatPumpCooling
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.domestic_hot_water_heat_pump_with_tes import \
DomesticHotWaterHeatPumpTes
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.pv_model import PVModel
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.electricity_demand_calculator import HourlyElectricityDemand
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
class ArchetypeCluster1:
def __init__(self, building, dt, output_path, csv_output=True):
self.building = building
self.dt = dt
self.output_path = output_path
self.csv_output = csv_output
self.heating_results, self.building_heating_hourly_consumption = self.heating_system_simulation()
self.cooling_results, self.total_cooling_consumption_hourly = self.cooling_system_simulation()
self.dhw_results, self.total_dhw_consumption_hourly = self.dhw_system_simulation()
if 'PV' in self.building.energy_systems_archetype_name:
self.pv_results = self.pv_system_simulation()
else:
self.pv_results = None
def heating_system_simulation(self):
building_heating_hourly_consumption = []
boiler = self.building.energy_systems[1].generation_systems[0]
hp = self.building.energy_systems[1].generation_systems[1]
tes = self.building.energy_systems[1].generation_systems[0].energy_storage_systems[0]
heating_demand_joules = self.building.heating_demand[cte.HOUR]
heating_peak_load_watts = self.building.heating_peak_load[cte.YEAR][0]
upper_limit_tes_heating = 55
outdoor_temperature = self.building.external_temperature[cte.HOUR]
results = HeatPumpBoilerTesHeating(hp=hp,
boiler=boiler,
tes=tes,
hourly_heating_demand_joules=heating_demand_joules,
heating_peak_load_watts=heating_peak_load_watts,
upper_limit_tes=upper_limit_tes_heating,
outdoor_temperature=outdoor_temperature,
dt=self.dt).simulation()
number_of_ts = int(cte.HOUR_TO_SECONDS/self.dt)
heating_consumption_joules = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in
results['Total Heating Power Consumption (W)']]
heating_consumption = 0
for i in range(1, len(heating_consumption_joules)):
heating_consumption += heating_consumption_joules[i]
if (i - 1) % number_of_ts == 0:
building_heating_hourly_consumption.append(heating_consumption)
heating_consumption = 0
return results, building_heating_hourly_consumption
def cooling_system_simulation(self):
hp = self.building.energy_systems[1].generation_systems[1]
cooling_demand_joules = self.building.cooling_demand[cte.HOUR]
cooling_peak_load = self.building.cooling_peak_load[cte.YEAR][0]
cutoff_temperature = 13
outdoor_temperature = self.building.external_temperature[cte.HOUR]
results = HeatPumpCooling(hp=hp,
hourly_cooling_demand_joules=cooling_demand_joules,
cooling_peak_load_watts=cooling_peak_load,
cutoff_temperature=cutoff_temperature,
outdoor_temperature=outdoor_temperature,
dt=self.dt).simulation()
building_cooling_hourly_consumption = hp.energy_consumption[cte.COOLING][cte.HOUR]
return results, building_cooling_hourly_consumption
def dhw_system_simulation(self):
building_dhw_hourly_consumption = []
hp = self.building.energy_systems[2].generation_systems[0]
tes = self.building.energy_systems[2].generation_systems[0].energy_storage_systems[0]
dhw_demand_joules = self.building.domestic_hot_water_heat_demand[cte.HOUR]
upper_limit_tes = 65
outdoor_temperature = self.building.external_temperature[cte.HOUR]
results = DomesticHotWaterHeatPumpTes(hp=hp,
tes=tes,
hourly_dhw_demand_joules=dhw_demand_joules,
upper_limit_tes=upper_limit_tes,
outdoor_temperature=outdoor_temperature,
dt=self.dt).simulation()
number_of_ts = int(cte.HOUR_TO_SECONDS/self.dt)
dhw_consumption_joules = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in
results['Total DHW Power Consumption (W)']]
dhw_consumption = 0
for i in range(1, len(dhw_consumption_joules)):
dhw_consumption += dhw_consumption_joules[i]
if (i - 1) % number_of_ts == 0:
building_dhw_hourly_consumption.append(dhw_consumption)
dhw_consumption = 0
return results, building_dhw_hourly_consumption
def pv_system_simulation(self):
results = None
pv = self.building.energy_systems[0].generation_systems[0]
hourly_electricity_demand = HourlyElectricityDemand(self.building).calculate()
model_type = 'fixed_efficiency'
if model_type == 'fixed_efficiency':
results = PVModel(pv=pv,
hourly_electricity_demand_joules=hourly_electricity_demand,
solar_radiation=self.building.roofs[0].global_irradiance_tilted[cte.HOUR],
installed_pv_area=self.building.roofs[0].installed_solar_collector_area,
model_type='fixed_efficiency').fixed_efficiency()
return results
def enrich_building(self):
results = self.heating_results | self.cooling_results | self.dhw_results
self.building.heating_consumption[cte.HOUR] = self.building_heating_hourly_consumption
self.building.heating_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self.building.heating_consumption[cte.HOUR]))
self.building.heating_consumption[cte.YEAR] = [sum(self.building.heating_consumption[cte.MONTH])]
self.building.cooling_consumption[cte.HOUR] = self.total_cooling_consumption_hourly
self.building.cooling_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self.building.cooling_consumption[cte.HOUR]))
self.building.cooling_consumption[cte.YEAR] = [sum(self.building.cooling_consumption[cte.MONTH])]
self.building.domestic_hot_water_consumption[cte.HOUR] = self.total_dhw_consumption_hourly
self.building.domestic_hot_water_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self.building.domestic_hot_water_consumption[cte.HOUR]))
self.building.domestic_hot_water_consumption[cte.YEAR] = [
sum(self.building.domestic_hot_water_consumption[cte.MONTH])]
if self.pv_results is not None:
self.building.onsite_electrical_production[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
self.pv_results['PV Output (W)']]
self.building.onsite_electrical_production[cte.MONTH] = MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR])
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
if self.csv_output:
file_name = f'pv_system_simulation_results_{self.building.name}.csv'
with open(self.output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(self.pv_results.keys())
# Write data
output_file.writerows(zip(*self.pv_results.values()))
if self.csv_output:
file_name = f'energy_system_simulation_results_{self.building.name}.csv'
with open(self.output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(results.keys())
# Write data
output_file.writerows(zip(*results.values()))

View File

@ -0,0 +1,80 @@
"""
EnergySystemSizingSimulationFactory retrieve the energy system archetype sizing and simulation module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2024 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
"""
from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.peak_load_sizing import \
PeakLoadSizing
from energy_system_modelling_package.energy_system_modelling_factories.system_sizing_methods.heuristic_sizing import \
HeuristicSizing
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.pv_sizing import PVSizing
class EnergySystemsSizingFactory:
"""
EnergySystemsFactory class
"""
def __init__(self, handler, city):
self._handler = '_' + handler.lower()
self._city = city
def _peak_load_sizing(self):
"""
Size Energy Systems based on a Load Matching method using the heating, cooling, and dhw peak loads
"""
PeakLoadSizing(self._city).enrich_buildings()
self._city.level_of_detail.energy_systems = 1
for building in self._city.buildings:
building.level_of_detail.energy_systems = 1
def _heurisitc_sizing(self):
"""
Size Energy Systems using a Single or Multi Objective GA
"""
HeuristicSizing(self._city).enrich_buildings()
self._city.level_of_detail.energy_systems = 1
for building in self._city.buildings:
building.level_of_detail.energy_systems = 1
def _pv_sizing(self):
"""
Size rooftop, facade or mixture of them for buildings
"""
system_type = 'rooftop'
results = {}
if system_type == 'rooftop':
surface_azimuth = 180
maintenance_factor = 0.1
mechanical_equipment_factor = 0.3
orientation_factor = 0.1
tilt_angle = self._city.latitude
pv_sizing = PVSizing(self._city,
tilt_angle=tilt_angle,
surface_azimuth=surface_azimuth,
mechanical_equipment_factor=mechanical_equipment_factor,
maintenance_factor=maintenance_factor,
orientation_factor=orientation_factor,
system_type=system_type)
results = pv_sizing.rooftop_sizing()
pv_sizing.rooftop_tilted_radiation()
self._city.level_of_detail.energy_systems = 1
for building in self._city.buildings:
building.level_of_detail.energy_systems = 1
return results
def _district_heating_cooling_sizing(self):
"""
Size District Heating and Cooling Network
"""
pass
def enrich(self):
"""
Enrich the city given to the class using the class given handler
:return: None
"""
return getattr(self, self._handler, lambda: None)()

View File

@ -0,0 +1,118 @@
import hub.helpers.constants as cte
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import HeatPump
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.thermal_storage_tank import StorageTank
from hub.helpers.monthly_values import MonthlyValues
class DomesticHotWaterHeatPumpTes:
def __init__(self, hp, tes, hourly_dhw_demand_joules, upper_limit_tes,
outdoor_temperature, dt=900):
self.hp = hp
self.tes = tes
self.dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_dhw_demand_joules]
self.upper_limit_tes = upper_limit_tes
self.hp_characteristics = HeatPump(self.hp, outdoor_temperature)
self.t_out = outdoor_temperature
self.dt = dt
self.results = {}
def simulation(self):
hp = self.hp
tes = self.tes
heating_coil_nominal_output = 0
if tes.heating_coil_capacity is not None:
heating_coil_nominal_output = float(tes.heating_coil_capacity)
storage_tank = StorageTank(volume=float(tes.volume),
height=float(tes.height),
material_layers=tes.layers,
heating_coil_capacity=heating_coil_nominal_output)
hp_delta_t = 8
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
source_temperature_hourly = self.hp_characteristics.hp_source_temperature()
source_temperature = [x for x in source_temperature_hourly for _ in range(number_of_ts)]
demand = [x for x in self.dhw_demand for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)", "total_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw, total_consumption) = \
[variables[name] for name in variable_names]
freshwater_temperature = 18
t_tank[0] = 70
for i in range(len(demand) - 1):
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY *
storage_tank.volume))
if t_tank[i] < self.upper_limit_tes:
q_hp[i] = hp.nominal_heat_output
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * storage_tank.volume))
if demand[i] > 0:
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
m_refill[i] = m_dis[i]
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (storage_tank.volume *
cte.WATER_DENSITY))
if t_tank[i] < 60:
q_coil[i] = float(storage_tank.heating_coil_capacity)
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * storage_tank.volume))
if q_hp[i] > 0:
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
else:
m_ch[i] = 0
t_sup_hp[i] = t_tank[i]
if q_hp[i] > 0:
if hp.source_medium == cte.AIR and hp.supply_medium == cte.WATER:
hp_cop[i] = self.hp_characteristics.air_to_water_cop(source_temperature[i], t_tank[i],
mode=cte.DOMESTIC_HOT_WATER)
hp_electricity[i] = q_hp[i] / hp_cop[i]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
total_consumption[i] = q_hp[i] + q_coil[i]
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
coil_hourly = []
coil_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
coil_sum = 0
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
if self.tes.heating_coil_capacity is not None:
tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
self.results['DHW Demand (W)'] = demand
self.results['DHW HP Heat Output (W)'] = q_hp
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
self.results['DHW HP Source Temperature'] = source_temperature
self.results['DHW HP Supply Temperature'] = t_sup_hp
self.results['DHW HP COP'] = hp_cop
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
self.results['DHW TES Temperature'] = t_tank
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
self.results['DHW Flow Rate (kg/s)'] = m_dis
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
self.results['Available Water in Tank (m3)'] = v_dhw
self.results['Total DHW Power Consumption (W)'] = total_consumption
return self.results

View File

@ -0,0 +1,166 @@
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import \
HeatPump
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.thermal_storage_tank import \
StorageTank
class HeatPumpBoilerTesHeating:
def __init__(self, hp, boiler, tes, hourly_heating_demand_joules, heating_peak_load_watts, upper_limit_tes,
outdoor_temperature, dt=900):
self.hp = hp
self.boiler = boiler
self.tes = tes
self.heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_heating_demand_joules]
self.heating_peak_load = heating_peak_load_watts
self.upper_limit_tes = upper_limit_tes
self.hp_characteristics = HeatPump(self.hp, outdoor_temperature)
self.t_out = outdoor_temperature
self.dt = dt
self.results = {}
def simulation(self):
hp, boiler, tes = self.hp, self.boiler, self.tes
heating_coil_nominal_output = 0
if tes.heating_coil_capacity is not None:
heating_coil_nominal_output = float(tes.heating_coil_capacity)
storage_tank = StorageTank(volume=float(tes.volume),
height=float(tes.height),
material_layers=tes.layers,
heating_coil_capacity=heating_coil_nominal_output)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self.heating_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self.t_out for _ in range(number_of_ts)]
source_temperature_hourly = self.hp_characteristics.hp_source_temperature()
source_temperature = [0] + [x for x in source_temperature_hourly for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
"heating_consumption", "heating_coil_output", "total_heating_energy_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
hp_electricity, boiler_fuel_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption, q_coil,
total_consumption) = [variables[name] for name in variable_names]
t_tank[0] = self.upper_limit_tes
hp_delta_t = 5
# storage temperature prediction
for i in range(len(demand) - 1):
t_tank[i + 1] = storage_tank.calculate_space_heating_fully_mixed(charging_flow_rate=m_ch[i],
discharging_flow_rate=m_dis[i],
supply_temperature=t_sup_boiler[i],
return_temperature=t_ret[i],
current_tank_temperature=t_tank[i],
heat_generator_input=q_coil[i],
ambient_temperature=t_out[i],
dt=self.dt)
# hp operation
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < self.upper_limit_tes and q_hp[i] > 0:
q_hp[i + 1] = hp.nominal_heat_output
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
if q_hp[i + 1] > 0:
if hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
hp_cop[i + 1] = self.hp_characteristics.air_to_water_cop(source_temperature[i + 1], t_tank[i + 1], mode=cte.HEATING)
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
# boiler operation
if q_hp[i + 1] > 0:
if t_sup_hp[i + 1] < 45:
q_boiler[i + 1] = boiler.nominal_heat_output
elif demand[i + 1] > 0.5 * self.heating_peak_load / self.dt:
q_boiler[i + 1] = 0.5 * boiler.nominal_heat_output
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / float(boiler.heat_efficiency)
if boiler.fuel_type == cte.ELECTRICITY:
boiler_fuel_consumption[i + 1] = boiler_energy_consumption[i + 1]
else:
# TODO: Other fuels should be considered
boiler_fuel_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (
float(boiler.heat_efficiency) * cte.NATURAL_GAS_LHV)
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
# heating coil operation
if t_tank[i + 1] < 35:
q_coil[i + 1] = heating_coil_nominal_output
# storage discharging
if demand[i + 1] == 0:
m_dis[i + 1] = 0
t_ret[i + 1] = t_tank[i + 1]
else:
if demand[i + 1] > 0.5 * self.heating_peak_load:
factor = 8
else:
factor = 4
m_dis[i + 1] = self.heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor)
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
# total consumption
total_consumption[i + 1] = q_hp[i + 1] + q_boiler[i + 1] + q_coil[i + 1]
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
boiler_hourly = []
coil_hourly = []
boiler_sum = 0
hp_sum = 0
coil_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
boiler_sum += boiler_consumption_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
boiler_hourly.append(boiler_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
boiler_sum = 0
coil_sum = 0
hp.energy_consumption[cte.HEATING] = {}
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.HEATING][cte.HOUR])
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
boiler.energy_consumption[cte.HEATING] = {}
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
boiler.energy_consumption[cte.HEATING][cte.HOUR])
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
if tes.heating_coil_capacity is not None:
tes.heating_coil_energy_consumption[cte.HEATING] = {}
tes.heating_coil_energy_consumption[cte.HEATING][cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.HEATING][cte.HOUR])
tes.heating_coil_energy_consumption[cte.HEATING][cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.HEATING][cte.MONTH])]
self.results['Heating Demand (W)'] = demand
self.results['HP Heat Output (W)'] = q_hp
self.results['HP Source Temperature'] = source_temperature
self.results['HP Supply Temperature'] = t_sup_hp
self.results['HP COP'] = hp_cop
self.results['HP Electricity Consumption (W)'] = hp_electricity
self.results['Boiler Heat Output (W)'] = q_boiler
self.results['Boiler Power Consumption (W)'] = boiler_energy_consumption
self.results['Boiler Supply Temperature'] = t_sup_boiler
self.results['Boiler Fuel Consumption'] = boiler_fuel_consumption
self.results['TES Temperature'] = t_tank
self.results['Heating Coil heat input'] = q_coil
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
self.results['Heating Loop Return Temperature'] = t_ret
self.results['Total Heating Power Consumption (W)'] = total_consumption
return self.results

View File

@ -0,0 +1,54 @@
import hub.helpers.constants as cte
class HeatPump:
def __init__(self, hp, t_out):
self.hp = hp
self.t_out = t_out
def hp_source_temperature(self):
if self.hp.source_medium == cte.AIR:
self.hp.source_temperature = self.t_out
elif self.hp.source_medium == cte.GROUND:
average_air_temperature = sum(self.t_out) / len(self.t_out)
self.hp.source_temperature = [average_air_temperature + 10] * len(self.t_out)
elif self.hp.source_medium == cte.WATER:
self.hp.source_temperature = [15] * len(self.t_out)
return self.hp.source_temperature
def air_to_water_cop(self, source_temperature, inlet_water_temperature, mode=cte.HEATING):
cop_coefficient = 1
t_inlet_water_fahrenheit = 1.8 * inlet_water_temperature + 32
t_source_fahrenheit = 1.8 * source_temperature + 32
if mode == cte.HEATING:
if self.hp.heat_efficiency_curve is not None:
cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.heat_efficiency_curve.coefficients]
cop_coefficient = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_inlet_water_fahrenheit +
cop_curve_coefficients[2] * t_inlet_water_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_source_fahrenheit +
cop_curve_coefficients[4] * t_source_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_inlet_water_fahrenheit * t_source_fahrenheit))
hp_efficiency = float(self.hp.heat_efficiency)
elif mode == cte.COOLING:
if self.hp.cooling_efficiency_curve is not None:
cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.cooling_efficiency_curve.coefficients]
cop_coefficient = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_inlet_water_fahrenheit +
cop_curve_coefficients[2] * t_inlet_water_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_source_fahrenheit +
cop_curve_coefficients[4] * t_source_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_inlet_water_fahrenheit * t_source_fahrenheit))
hp_efficiency = float(self.hp.cooling_efficiency)
else:
if self.hp.heat_efficiency_curve is not None:
cop_curve_coefficients = [float(coefficient) for coefficient in self.hp.heat_efficiency_curve.coefficients]
cop_coefficient = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * inlet_water_temperature +
cop_curve_coefficients[2] * inlet_water_temperature ** 2 +
cop_curve_coefficients[3] * source_temperature +
cop_curve_coefficients[4] * source_temperature ** 2 +
cop_curve_coefficients[5] * inlet_water_temperature * source_temperature))
hp_efficiency = float(self.hp.heat_efficiency)
hp_cop = cop_coefficient * hp_efficiency
return hp_cop

View File

@ -0,0 +1,86 @@
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
from energy_system_modelling_package.energy_system_modelling_factories.hvac_dhw_systems_simulation_models.heat_pump_characteristics import HeatPump
class HeatPumpCooling:
def __init__(self, hp, hourly_cooling_demand_joules, cooling_peak_load_watts, cutoff_temperature, outdoor_temperature,
dt=900):
self.hp = hp
self.cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_cooling_demand_joules]
self.cooling_peak_load = cooling_peak_load_watts
self.cutoff_temperature = cutoff_temperature
self.dt = dt
self.results = {}
self.heat_pump_characteristics = HeatPump(self.hp, outdoor_temperature)
def simulation(self):
source_temperature_hourly = self.heat_pump_characteristics.hp_source_temperature()
cooling_efficiency = float(self.hp.cooling_efficiency)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self.cooling_demand for _ in range(number_of_ts)]
source_temperature = [0] + [x for x in source_temperature_hourly for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
t_ret[0] = self.cutoff_temperature
for i in range(1, len(demand)):
if demand[i] > 0.15 * self.cooling_peak_load:
m[i] = self.hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
if t_ret[i - 1] >= self.cutoff_temperature:
if demand[i] < 0.25 * self.cooling_peak_load:
q_hp[i] = 0.25 * self.hp.nominal_cooling_output
elif demand[i] < 0.5 * self.cooling_peak_load:
q_hp[i] = 0.5 * self.hp.nominal_cooling_output
else:
q_hp[i] = self.hp.nominal_cooling_output
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
if m[i] == 0:
t_ret[i] = t_sup_hp[i]
else:
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
m[i] = 0
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
t_ret[i] = t_ret[i - 1]
if q_hp[i] > 0:
if self.hp.source_medium == cte.AIR and self.hp.supply_medium == cte.WATER:
hp_cop[i] = self.heat_pump_characteristics.air_to_water_cop(source_temperature[i], t_ret[i],
mode=cte.COOLING)
hp_electricity[i] = q_hp[i] / cooling_efficiency
else:
hp_cop[i] = 0
hp_electricity[i] = 0
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
hp_hourly = []
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
if (i - 1) % number_of_ts == 0:
hp_hourly.append(hp_sum)
hp_sum = 0
self.hp.energy_consumption[cte.COOLING] = {}
self.hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
self.hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
self.hp.energy_consumption[cte.COOLING][cte.HOUR])
self.hp.energy_consumption[cte.COOLING][cte.YEAR] = [
sum(self.hp.energy_consumption[cte.COOLING][cte.MONTH])]
self.results['Cooling Demand (W)'] = demand
self.results['HP Cooling Output (W)'] = q_hp
self.results['HP Source Temperature'] = source_temperature
self.results['HP Cooling Supply Temperature'] = t_sup_hp
self.results['HP Cooling COP'] = hp_cop
self.results['HP Electricity Consumption'] = hp_electricity
self.results['Cooling Loop Flow Rate (kg/s)'] = m
self.results['Cooling Loop Return Temperature'] = t_ret
return self.results

View File

@ -0,0 +1,52 @@
import math
import hub.helpers.constants as cte
class StorageTank:
"""
Calculation of the temperature inside a hot water storage tank in the next time step
"""
def __init__(self, volume, height, material_layers, heating_coil_capacity, stratification_layer=1):
self.volume = volume
self.height = height
self.materials = material_layers
self.number_of_vertical_layers = stratification_layer
self.heating_coil_capacity = heating_coil_capacity
def heat_loss_coefficient(self):
if self.number_of_vertical_layers == 1:
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
self.materials)
u_tot = 1 / r_tot
d = math.sqrt((4 * self.volume) / (math.pi * self.height))
a_side = math.pi * d * self.height
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
return ua
else:
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
self.materials)
u_tot = 1 / r_tot
d = math.sqrt((4 * self.volume) / (math.pi * self.height))
a_side = math.pi * d * self.height
a_top = math.pi * d ** 2 / 4
ua_side = u_tot * a_side
ua_top_bottom = u_tot * (a_top + a_side)
return ua_side, ua_top_bottom
def calculate_space_heating_fully_mixed(self, charging_flow_rate, discharging_flow_rate, supply_temperature, return_temperature,
current_tank_temperature, heat_generator_input, ambient_temperature, dt):
ua = self.heat_loss_coefficient()
t_tank = (current_tank_temperature +
(charging_flow_rate * (supply_temperature - current_tank_temperature) +
(ua * (ambient_temperature - current_tank_temperature)) / cte.WATER_HEAT_CAPACITY -
discharging_flow_rate * (current_tank_temperature - return_temperature) +
heat_generator_input / cte.WATER_HEAT_CAPACITY) * (dt / (cte.WATER_DENSITY * self.volume)))
return t_tank
def calculate_dhw_fully_mixed(self, charging_flow_rate, discharging_flow_rate, supply_temperature, return_temperature,
current_tank_temperature, heat_generator_input, ambient_temperature, dt):
pass

View File

@ -0,0 +1,35 @@
"""
EnergySystemSizingSimulationFactory retrieve the energy system archetype sizing and simulation module
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2024 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
"""
from energy_system_modelling_package.energy_system_modelling_factories.archetypes.montreal.archetype_cluster_1 import ArchetypeCluster1
class MontrealEnergySystemArchetypesSimulationFactory:
"""
EnergySystemsFactory class
"""
def __init__(self, handler, building, output_path):
self._output_path = output_path
self._handler = '_' + handler.lower()
self._building = building
def _archetype_cluster_1(self):
"""
Enrich the city by using the sizing and simulation model developed for archetype13 of montreal_future_systems
"""
dt = 900
ArchetypeCluster1(self._building, dt, self._output_path, csv_output=True).enrich_building()
self._building.level_of_detail.energy_systems = 2
self._building.level_of_detail.energy_systems = 2
def enrich(self):
"""
Enrich the city given to the class using the class given handler
:return: None
"""
getattr(self, self._handler, lambda: None)()

View File

@ -0,0 +1,73 @@
import hub.helpers.constants as cte
class HourlyElectricityDemand:
def __init__(self, building):
self.building = building
def calculate(self):
hourly_electricity_consumption = []
energy_systems = self.building.energy_systems
appliance = self.building.appliances_electrical_demand[cte.HOUR]
lighting = self.building.lighting_electrical_demand[cte.HOUR]
elec_heating = 0
elec_cooling = 0
elec_dhw = 0
if cte.HEATING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
elec_heating = 1
if cte.COOLING in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
elec_cooling = 1
if cte.DOMESTIC_HOT_WATER in self.building.energy_consumption_breakdown[cte.ELECTRICITY]:
elec_dhw = 1
heating = None
cooling = None
dhw = None
if elec_heating == 1:
for energy_system in energy_systems:
if cte.HEATING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
if generation_system.fuel_type == cte.ELECTRICITY:
if cte.HEATING in generation_system.energy_consumption:
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
else:
if len(energy_system.generation_systems) > 1:
heating = [x / 2 for x in self.building.heating_consumption[cte.HOUR]]
else:
heating = self.building.heating_consumption[cte.HOUR]
if elec_dhw == 1:
for energy_system in energy_systems:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
if generation_system.fuel_type == cte.ELECTRICITY:
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
else:
if len(energy_system.generation_systems) > 1:
dhw = [x / 2 for x in self.building.domestic_hot_water_consumption[cte.HOUR]]
else:
dhw = self.building.domestic_hot_water_consumption[cte.HOUR]
if elec_cooling == 1:
for energy_system in energy_systems:
if cte.COOLING in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
if cte.COOLING in generation_system.energy_consumption:
cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
else:
if len(energy_system.generation_systems) > 1:
cooling = [x / 2 for x in self.building.cooling_consumption[cte.HOUR]]
else:
cooling = self.building.cooling_consumption[cte.HOUR]
for i in range(len(self.building.heating_demand[cte.HOUR])):
hourly = 0
hourly += appliance[i]
hourly += lighting[i]
if heating is not None:
hourly += heating[i]
if cooling is not None:
hourly += cooling[i]
if dhw is not None:
hourly += dhw[i]
hourly_electricity_consumption.append(hourly)
return hourly_electricity_consumption

View File

@ -1,7 +1,7 @@
from pathlib import Path
import subprocess
from hub.imports.geometry_factory import GeometryFactory
from scripts.geojson_creator import process_geojson
from building_modelling.geojson_creator import process_geojson
from hub.helpers.dictionaries import Dictionaries
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
@ -9,8 +9,8 @@ from hub.exports.exports_factory import ExportsFactory
def pv_feasibility(current_x, current_y, current_diff, selected_buildings):
input_files_path = (Path(__file__).parent.parent / 'input_files')
output_path = (Path(__file__).parent.parent / 'out_files').resolve()
input_files_path = (Path(__file__).parent.parent.parent.parent / 'input_files')
output_path = (Path(__file__).parent.parent.parent.parent / 'out_files').resolve()
sra_output_path = output_path / 'sra_outputs' / 'extended_city_sra_outputs'
sra_output_path.mkdir(parents=True, exist_ok=True)
new_diff = current_diff * 5

View File

@ -0,0 +1,42 @@
import math
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
class PVModel:
def __init__(self, pv, hourly_electricity_demand_joules, solar_radiation, installed_pv_area, model_type, ns=None,
np=None):
self.pv = pv
self.hourly_electricity_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in hourly_electricity_demand_joules]
self.solar_radiation = solar_radiation
self.installed_pv_area = installed_pv_area
self._model_type = '_' + model_type.lower()
self.ns = ns
self.np = np
self.results = {}
def fixed_efficiency(self):
module_efficiency = float(self.pv.electricity_efficiency)
variable_names = ["pv_output", "import", "export", "self_sufficiency_ratio"]
variables = {name: [0] * len(self.hourly_electricity_demand) for name in variable_names}
(pv_out, grid_import, grid_export, self_sufficiency_ratio) = [variables[name] for name in variable_names]
for i in range(len(self.hourly_electricity_demand)):
pv_out[i] = module_efficiency * self.installed_pv_area * self.solar_radiation[i] / cte.WATTS_HOUR_TO_JULES
if pv_out[i] < self.hourly_electricity_demand[i]:
grid_import[i] = self.hourly_electricity_demand[i] - pv_out[i]
else:
grid_export[i] = pv_out[i] - self.hourly_electricity_demand[i]
self_sufficiency_ratio[i] = pv_out[i] / self.hourly_electricity_demand[i]
self.results['Electricity Demand (W)'] = self.hourly_electricity_demand
self.results['PV Output (W)'] = pv_out
self.results['Imported from Grid (W)'] = grid_import
self.results['Exported to Grid (W)'] = grid_export
self.results['Self Sufficiency Ratio'] = self_sufficiency_ratio
return self.results
def enrich(self):
"""
Enrich the city given to the class using the class given handler
:return: None
"""
return getattr(self, self._model_type, lambda: None)()

View File

@ -0,0 +1,70 @@
import math
import hub.helpers.constants as cte
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.solar_angles import CitySolarAngles
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.radiation_tilted import RadiationTilted
class PVSizing(CitySolarAngles):
def __init__(self, city, tilt_angle, surface_azimuth=180, maintenance_factor=0.1, mechanical_equipment_factor=0.3,
orientation_factor=0.1, system_type='rooftop'):
super().__init__(location_latitude=city.latitude,
location_longitude=city.longitude,
tilt_angle=tilt_angle,
surface_azimuth_angle=surface_azimuth)
self.city = city
self.maintenance_factor = maintenance_factor
self.mechanical_equipment_factor = mechanical_equipment_factor
self.orientation_factor = orientation_factor
self.angles = self.calculate
self.system_type = system_type
def rooftop_sizing(self):
results = {}
# Available Roof Area
for building in self.city.buildings:
for energy_system in building.energy_systems:
for generation_system in energy_system.generation_systems:
if generation_system.system_type == cte.PHOTOVOLTAIC:
module_width = float(generation_system.width)
module_height = float(generation_system.height)
roof_area = 0
for roof in building.roofs:
roof_area += roof.perimeter_area
pv_module_area = module_width * module_height
available_roof = ((self.maintenance_factor + self.orientation_factor + self.mechanical_equipment_factor) *
roof_area)
# Inter-Row Spacing
winter_solstice = self.angles[(self.angles['AST'].dt.month == 12) &
(self.angles['AST'].dt.day == 21) &
(self.angles['AST'].dt.hour == 12)]
solar_altitude = winter_solstice['solar altitude'].values[0]
solar_azimuth = winter_solstice['solar azimuth'].values[0]
distance = ((module_height * abs(math.cos(math.radians(solar_azimuth)))) /
math.tan(math.radians(solar_altitude)))
distance = float(format(distance, '.1f'))
# Calculation of the number of panels
space_dimension = math.sqrt(available_roof)
space_dimension = float(format(space_dimension, '.2f'))
panels_per_row = math.ceil(space_dimension / module_width)
number_of_rows = math.ceil(space_dimension / distance)
total_number_of_panels = panels_per_row * number_of_rows
total_pv_area = panels_per_row * number_of_rows * pv_module_area
building.roofs[0].installed_solar_collector_area = total_pv_area
results[f'Building {building.name}'] = {'total_roof_area': roof_area,
'PV dedicated area': available_roof,
'total_pv_area': total_pv_area,
'total_number_of_panels': total_number_of_panels,
'number_of_rows': number_of_rows,
'panels_per_row': panels_per_row}
return results
def rooftop_tilted_radiation(self):
for building in self.city.buildings:
RadiationTilted(building=building,
solar_angles=self.angles,
tilt_angle=self.tilt_angle,
ghi=building.roofs[0].global_irradiance[cte.HOUR],
).enrich()
def facade_sizing(self):
pass

View File

@ -1,6 +1,6 @@
import math
from scripts.radiation_tilted import RadiationTilted
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.radiation_tilted import RadiationTilted
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
@ -43,7 +43,7 @@ class PVSizingSimulation(RadiationTilted):
self.total_number_of_panels = panels_per_row * number_of_rows
return panels_per_row, number_of_rows
def pv_output(self):
def pv_output_constant_efficiency(self):
radiation = self.total_radiation_tilted
pv_module_area = self.module_width * self.module_height
available_roof = self.available_space()

View File

@ -100,10 +100,7 @@ class RadiationTilted:
def enrich(self):
tilted_radiation = self.total_radiation_tilted
self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
tilted_radiation]
self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = [x * cte.WATTS_HOUR_TO_JULES for x in
tilted_radiation]
self.building.roofs[0].global_irradiance_tilted[cte.HOUR] = tilted_radiation
self.building.roofs[0].global_irradiance_tilted[cte.MONTH] = (
MonthlyValues.get_total_month(self.building.roofs[0].global_irradiance_tilted[cte.HOUR]))
self.building.roofs[0].global_irradiance_tilted[cte.YEAR] = \

View File

@ -5,9 +5,8 @@ from pathlib import Path
class CitySolarAngles:
def __init__(self, file_name, location_latitude, location_longitude, tilt_angle, surface_azimuth_angle,
def __init__(self, location_latitude, location_longitude, tilt_angle, surface_azimuth_angle,
standard_meridian=-75):
self.file_name = file_name
self.location_latitude = location_latitude
self.location_longitude = location_longitude
self.location_latitude_rad = math.radians(location_latitude)
@ -29,7 +28,7 @@ class CitySolarAngles:
self.incidents = []
self.beam_tilted = []
self.factor = []
self.times = pd.date_range(start='2023-01-01', end='2024-01-01', freq='H', tz=self.timezone)
self.times = pd.date_range(start='2023-01-01', end='2024-01-01', freq='h', tz=self.timezone)
self.df = pd.DataFrame(index=self.times)
self.day_of_year = self.df.index.dayofyear

View File

@ -0,0 +1,6 @@
class HeuristicSizing:
def __init__(self, city):
pass
def enrich_buildings(self):
pass

View File

@ -0,0 +1,99 @@
import hub.helpers.constants as cte
class PeakLoadSizing:
def __init__(self, city, default_primary_unit_percentage=0.7, storage_peak_coverage=3):
self.city = city
self.default_primary_unit_percentage = default_primary_unit_percentage
self.storage_peak_coverage = storage_peak_coverage
def enrich_buildings(self):
total_demand = 0
for building in self.city.buildings:
energy_systems = building.energy_systems
for energy_system in energy_systems:
if cte.HEATING in energy_system.demand_types:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
total_demand = [(building.heating_demand[cte.HOUR][i] +
building.domestic_hot_water_heat_demand[cte.HOUR][i]) / cte.WATTS_HOUR_TO_JULES
for i in range(len(building.heating_demand[cte.HOUR]))]
else:
total_demand = building.heating_peak_load[cte.YEAR]
design_load = max(total_demand)
self.allocate_capacity(energy_system, design_load, cte.HEATING, self.default_primary_unit_percentage)
if cte.COOLING in energy_system.demand_types:
cooling_design_load = building.cooling_peak_load[cte.YEAR][0]
self.allocate_capacity(energy_system, cooling_design_load, cte.COOLING,
self.default_primary_unit_percentage)
elif cte.COOLING in energy_system.demand_types:
design_load = building.cooling_peak_load[cte.YEAR][0]
self.allocate_capacity(energy_system, design_load, cte.COOLING, self.default_primary_unit_percentage)
elif cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
design_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self.allocate_capacity(energy_system, design_load, cte.DOMESTIC_HOT_WATER,
self.default_primary_unit_percentage)
for generation_system in energy_system.generation_systems:
storage_systems = generation_system.energy_storage_systems
if storage_systems is not None:
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
operation_range = 10
else:
operation_range = 20
for storage_system in storage_systems:
if storage_system.type_energy_stored == cte.THERMAL:
self.tes_sizing(storage_system, max(total_demand), self.storage_peak_coverage, operation_range)
def allocate_capacity(self, energy_system, design_load, demand_type, default_primary_unit_percentage):
if len(energy_system.generation_systems) == 1:
# If there's only one generation system, it gets the full design load.
if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
energy_system.generation_systems[0].nominal_heat_output = design_load
elif demand_type == cte.COOLING:
energy_system.generation_systems[0].nominal_cooling_output = design_load
else:
cooling_equipments_number = 0
# Distribute the load among generation systems.
max_efficiency = 0
main_generation_unit = None
for generation_system in energy_system.generation_systems:
if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
if max_efficiency < float(generation_system.heat_efficiency):
max_efficiency = float(generation_system.heat_efficiency)
main_generation_unit = generation_system
elif demand_type == cte.COOLING and generation_system.fuel_type == cte.ELECTRICITY:
cooling_equipments_number += 1
if max_efficiency < float(generation_system.cooling_efficiency):
max_efficiency = float(generation_system.heat_efficiency)
main_generation_unit = generation_system
for generation_system in energy_system.generation_systems:
if generation_system.system_type == main_generation_unit.system_type:
if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
generation_system.nominal_heat_output = round(default_primary_unit_percentage * design_load)
elif demand_type == cte.COOLING and cooling_equipments_number > 1:
generation_system.nominal_cooling_output = round(default_primary_unit_percentage * design_load)
else:
generation_system.nominal_cooling_output = design_load
else:
if demand_type == cte.HEATING or demand_type == cte.DOMESTIC_HOT_WATER:
generation_system.nominal_heat_output = round(((1 - default_primary_unit_percentage) * design_load /
(len(energy_system.generation_systems) - 1)))
elif demand_type == cte.COOLING and cooling_equipments_number > 1:
generation_system.nominal_cooling_output = round(((1 - default_primary_unit_percentage) * design_load /
(len(energy_system.generation_systems) - 1)))
@staticmethod
def tes_sizing(storage, peak_load, coverage, operational_temperature_range):
storage.volume = round((peak_load * coverage * cte.WATTS_HOUR_TO_JULES) /
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * operational_temperature_range))
@staticmethod
def cooling_equipments(energy_system):
counter = 0
for generation_system in energy_system.generation_systems:
if generation_system.fuel_type == cte.ELECTRICITY:
counter += 1
return counter

View File

@ -2,7 +2,7 @@ import os
import hub.helpers.constants as cte
import matplotlib.pyplot as plt
from matplotlib import cm
from scripts.report_creation import LatexReport
from energy_system_modelling_package.report_creation import LatexReport
from matplotlib.ticker import MaxNLocator
import numpy as np
from pathlib import Path
@ -565,7 +565,7 @@ class EnergySystemRetrofitReport:
placement='H')
self.report.add_section(f'{self.retrofit_scenario}')
self.report.add_subsection('Proposed Systems')
self.energy_system_archetype_schematic()
# self.energy_system_archetype_schematic()
if 'PV' in self.retrofit_scenario:
self.report.add_subsection('Rooftop Photovoltaic System Implementation')
self.pv_system()

View File

@ -5,10 +5,10 @@ Copyright © 2022 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
"""
from scripts.system_simulation_models.archetype13 import Archetype13
from scripts.system_simulation_models.archetype13_stratified_tes import Archetype13Stratified
from scripts.system_simulation_models.archetype1 import Archetype1
from scripts.system_simulation_models.archetypes14_15 import Archetype14_15
from energy_system_modelling_package.system_simulation_models.archetype13 import Archetype13
from energy_system_modelling_package.system_simulation_models.archetype13_stratified_tes import Archetype13Stratified
from energy_system_modelling_package.system_simulation_models.archetype1 import Archetype1
from energy_system_modelling_package.system_simulation_models.archetypes14_15 import Archetype14_15
class EnergySystemsSimulationFactory:

View File

@ -28,13 +28,21 @@ residential_systems_percentage = {'system 1 gas': 15,
'system 8 gas': 15,
'system 8 electricity': 35}
residential_new_systems_percentage = {'PV+ASHP+GasBoiler+TES': 0,
'PV+4Pipe+DHW': 100,
'PV+ASHP+ElectricBoiler+TES': 0,
'PV+GSHP+GasBoiler+TES': 0,
'PV+GSHP+ElectricBoiler+TES': 0,
'PV+WSHP+GasBoiler+TES': 0,
'PV+WSHP+ElectricBoiler+TES': 0}
residential_new_systems_percentage = {
'Central 4 Pipes Air to Water Heat Pump and Gas Boiler with Independent Water Heating and PV': 100,
'Central 4 Pipes Air to Water Heat Pump and electrical Boiler with Independent Water Heating and PV': 0,
'Central 4 Pipes Ground to Water Heat Pump and Gas Boiler with Independent Water Heating and PV': 0,
'Central 4 Pipes Ground to Water Heat Pump and electrical Boiler with Independent Water Heating and PV': 0,
'Central 4 Pipes Water to Water Heat Pump and Gas Boiler with Independent Water Heating and PV': 0,
'Central 4 Pipes Water to Water Heat Pump and electrical Boiler with Independent Water Heating and PV': 0,
'Central 4 Pipes Air to Water Heat Pump and Gas Boiler with Independent Water Heating': 0,
'Central 4 Pipes Air to Water Heat Pump and electrical Boiler with Independent Water Heating': 0,
'Central 4 Pipes Ground to Water Heat Pump and Gas Boiler with Independent Water Heating': 0,
'Central 4 Pipes Ground to Water Heat Pump and electrical Boiler with Independent Water Heating': 0,
'Central 4 Pipes Water to Water Heat Pump and Gas Boiler with Independent Water Heating': 0,
'Central 4 Pipes Water to Water Heat Pump and electrical Boiler with Independent Water Heating': 0,
'Rooftop PV System': 0
}
non_residential_systems_percentage = {'system 1 gas': 0,
'system 1 electricity': 0,

View File

@ -1,26 +1,25 @@
from pathlib import Path
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from building_modelling.ep_run_enrich import energy_plus_workflow
from energy_system_modelling_package.energy_system_modelling_factories.montreal_energy_system_archetype_modelling_factory import \
MontrealEnergySystemArchetypesSimulationFactory
from energy_system_modelling_package.energy_system_modelling_factories.pv_assessment.pv_feasibility import \
pv_feasibility
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
from scripts.geojson_creator import process_geojson
from scripts import random_assignation
from energy_system_modelling_package.energy_system_retrofit.energy_system_retrofit_report import EnergySystemRetrofitReport
from building_modelling.geojson_creator import process_geojson
from energy_system_modelling_package import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing import SystemSizing
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
from scripts.energy_system_retrofit_results import consumption_data, cost_data
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
import hub.helpers.constants as cte
from energy_system_modelling_package.energy_system_modelling_factories.energy_system_sizing_factory import EnergySystemsSizingFactory
from energy_system_modelling_package.energy_system_retrofit.energy_system_retrofit_results import consumption_data, cost_data
from costing_package.cost import Cost
from costing_package.constants import SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_feasibility import pv_feasibility
# Specify the GeoJSON file path
input_files_path = (Path(__file__).parent / 'input_files')
@ -52,14 +51,9 @@ subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, sra_output_path).enrich()
pv_feasibility(-73.5681295982132, 45.49218262677643, 0.0001, selected_buildings=city.buildings)
energy_plus_workflow(city, energy_plus_output_path)
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
EnergySystemsFactory('montreal_custom', city).enrich()
SystemSizing(city.buildings).montreal_custom()
EnergySystemsSizingFactory('peak_load_sizing', city).enrich()
current_status_energy_consumption = consumption_data(city)
current_status_life_cycle_cost = {}
for building in city.buildings:
@ -71,18 +65,12 @@ for building in city.buildings:
current_status_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario)
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
EnergySystemsFactory('montreal_future', city).enrich()
EnergySystemsSizingFactory('pv_sizing', city).enrich()
EnergySystemsSizingFactory('peak_load_sizing', city).enrich()
for building in city.buildings:
if 'PV' in building.energy_systems_archetype_name:
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
pv_sizing_simulation = PVSizingSimulation(building,
solar_angles,
tilt_angle=45,
module_height=1,
module_width=2,
ghi=ghi)
pv_sizing_simulation.pv_output()
if building.energy_systems_archetype_name == 'PV+4Pipe+DHW':
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
MontrealEnergySystemArchetypesSimulationFactory(f'archetype_cluster_{building.energy_systems_archetype_cluster_id}',
building,
simulation_results_path).enrich()
retrofitted_energy_consumption = consumption_data(city)
retrofitted_life_cycle_cost = {}
for building in city.buildings:

View File

@ -15,11 +15,20 @@ class Archetype:
"""
Archetype class
"""
def __init__(self, name, systems):
def __init__(self, name, systems, archetype_cluster_id=None):
self._cluster_id = archetype_cluster_id
self._name = name
self._systems = systems
@property
def cluster_id(self):
"""
Get id
:return: string
"""
return self._cluster_id
@property
def name(self):
"""
@ -43,8 +52,9 @@ class Archetype:
_systems.append(_system.to_dictionary())
content = {
'Archetype': {
'cluster_id': self.cluster_id,
'name': self.name,
'systems': _systems
}
}
}
return content

View File

@ -17,8 +17,9 @@ class PvGenerationSystem(GenerationSystem):
def __init__(self, system_id, name, system_type, model_name=None, manufacturer=None, electricity_efficiency=None,
nominal_electricity_output=None, nominal_ambient_temperature=None, nominal_cell_temperature=None,
nominal_radiation=None, standard_test_condition_cell_temperature=None,
standard_test_condition_maximum_power=None, cell_temperature_coefficient=None, width=None, height=None,
distribution_systems=None, energy_storage_systems=None):
standard_test_condition_maximum_power=None, standard_test_condition_radiation=None,
cell_temperature_coefficient=None, width=None, height=None, distribution_systems=None,
energy_storage_systems=None):
super().__init__(system_id=system_id, name=name, model_name=model_name,
manufacturer=manufacturer, fuel_type='renewable', distribution_systems=distribution_systems,
energy_storage_systems=energy_storage_systems)
@ -30,6 +31,7 @@ class PvGenerationSystem(GenerationSystem):
self._nominal_radiation = nominal_radiation
self._standard_test_condition_cell_temperature = standard_test_condition_cell_temperature
self._standard_test_condition_maximum_power = standard_test_condition_maximum_power
self._standard_test_condition_radiation = standard_test_condition_radiation
self._cell_temperature_coefficient = cell_temperature_coefficient
self._width = width
self._height = height
@ -98,6 +100,15 @@ class PvGenerationSystem(GenerationSystem):
"""
return self._standard_test_condition_maximum_power
@property
def standard_test_condition_radiation(self):
"""
Get standard test condition cell temperature of PV panels in W/m2
:return: float
"""
return self._standard_test_condition_radiation
@property
def cell_temperature_coefficient(self):
"""
@ -143,6 +154,7 @@ class PvGenerationSystem(GenerationSystem):
'nominal radiation [W/m2]': self.nominal_radiation,
'standard test condition cell temperature [Celsius]': self.standard_test_condition_cell_temperature,
'standard test condition maximum power [W]': self.standard_test_condition_maximum_power,
'standard test condition radiation [W/m2]': self.standard_test_condition_radiation,
'cell temperature coefficient': self.cell_temperature_coefficient,
'width': self.width,
'height': self.height,

View File

@ -193,6 +193,7 @@ class MontrealFutureSystemCatalogue(Catalog):
nominal_radiation = pv['nominal_radiation']
standard_test_condition_cell_temperature = pv['standard_test_condition_cell_temperature']
standard_test_condition_maximum_power = pv['standard_test_condition_maximum_power']
standard_test_condition_radiation = pv['standard_test_condition_radiation']
cell_temperature_coefficient = pv['cell_temperature_coefficient']
width = pv['width']
height = pv['height']
@ -215,6 +216,7 @@ class MontrealFutureSystemCatalogue(Catalog):
standard_test_condition_cell_temperature=
standard_test_condition_cell_temperature,
standard_test_condition_maximum_power=standard_test_condition_maximum_power,
standard_test_condition_radiation=standard_test_condition_radiation,
cell_temperature_coefficient=cell_temperature_coefficient,
width=width,
height=height,
@ -379,6 +381,7 @@ class MontrealFutureSystemCatalogue(Catalog):
_system_archetypes = []
system_clusters = self._archetypes['EnergySystemCatalog']['system_archetypes']['system_archetype']
for system_cluster in system_clusters:
archetype_id = system_cluster['@cluster_id']
name = system_cluster['name']
systems = system_cluster['systems']['system_id']
integer_system_ids = [int(item) for item in systems]
@ -386,7 +389,7 @@ class MontrealFutureSystemCatalogue(Catalog):
for system_archetype in self._systems:
if int(system_archetype.id) in integer_system_ids:
_systems.append(system_archetype)
_system_archetypes.append(Archetype(name=name, systems=_systems))
_system_archetypes.append(Archetype(archetype_cluster_id=archetype_id, name=name, systems=_systems))
return _system_archetypes
def _load_materials(self):

View File

@ -92,7 +92,7 @@ class Building(CityObject):
logging.error('Building %s [%s] has an unexpected surface type %s.', self.name, self.aliases, surface.type)
self._domestic_hot_water_peak_load = None
self._fuel_consumption_breakdown = {}
self._pv_generation = {}
self._systems_archetype_cluster_id = None
@property
def shell(self) -> Polyhedron:
@ -857,8 +857,8 @@ class Building(CityObject):
storage_systems = generation_system.energy_storage_systems
if storage_systems:
for storage_system in storage_systems:
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_energy_consumption:
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[cte.YEAR][0]
if storage_system.type_energy_stored == 'thermal' and storage_system.heating_coil_capacity is not None:
fuel_breakdown[cte.ELECTRICITY][f'{demand_type}'] += storage_system.heating_coil_energy_consumption[f'{demand_type}'][cte.YEAR][0]
#TODO: When simulation models of all energy system archetypes are created, this part can be removed
heating_fuels = []
dhw_fuels = []
@ -890,3 +890,19 @@ class Building(CityObject):
self._fuel_consumption_breakdown = fuel_breakdown
return self._fuel_consumption_breakdown
@property
def energy_systems_archetype_cluster_id(self):
"""
Get energy systems archetype id
:return: str
"""
return self._systems_archetype_cluster_id
@energy_systems_archetype_cluster_id.setter
def energy_systems_archetype_cluster_id(self, value):
"""
Set energy systems archetype id
:param value: str
"""
self._systems_archetype_cluster_id = value

View File

@ -18,7 +18,6 @@ from hub.city_model_structure.attributes.point import Point
from hub.city_model_structure.greenery.vegetation import Vegetation
from hub.city_model_structure.building_demand.thermal_boundary import ThermalBoundary
import hub.helpers.constants as cte
from hub.helpers.configuration_helper import ConfigurationHelper
class Surface:
@ -157,6 +156,7 @@ class Surface:
if self._inclination is None:
self._inclination = np.arccos(self.perimeter_polygon.normal[2])
return self._inclination
@property
def type(self):
"""
@ -167,10 +167,10 @@ class Surface:
"""
if self._type is None:
inclination_cos = math.cos(self.inclination)
# 170 degrees
# 170 degrees
if inclination_cos <= -0.98:
self._type = 'Ground'
# between 80 and 100 degrees
# between 80 and 100 degrees
elif abs(inclination_cos) <= 0.17:
self._type = 'Wall'
else:
@ -365,12 +365,12 @@ class Surface:
_protected_building_restriction = 1
# 10 degrees range
if abs(math.sin(self.inclination)) < 0.17:
# horizontal
# horizontal
_construction_restriction = 0.8
_separation_of_panels = 0.46
_shadow_between_panels = 0.7
else:
# tilted
# tilted
_construction_restriction = 0.9
_separation_of_panels = 0.9
_shadow_between_panels = 1
@ -417,4 +417,4 @@ class Surface:
Set installed solar collector area in m2
:return: dict
"""
self._installed_solar_collector_area = value
self._installed_solar_collector_area = value

View File

@ -24,7 +24,7 @@ class ThermalStorageSystem(EnergyStorageSystem):
self._maximum_operating_temperature = None
self._heating_coil_capacity = None
self._temperature = None
self._heating_coil_energy_consumption = None
self._heating_coil_energy_consumption = {}
@property
def volume(self):

View File

@ -457,6 +457,7 @@
<nominal_cell_temperature/>
<nominal_radiation/>
<standard_test_condition_cell_temperature/>
<standard_test_condition_radiation/>
<standard_test_condition_maximum_power/>
<cell_temperature_coefficient/>
<width>2.01</width>
@ -911,7 +912,7 @@
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency>4.5</cooling_efficiency>
<cooling_efficiency>4</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
@ -962,7 +963,7 @@
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<cooling_efficiency>5</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
@ -993,7 +994,7 @@
<nominal_heat_output/>
<minimum_heat_output/>
<maximum_heat_output/>
<heat_efficiency>3.5</heat_efficiency>
<heat_efficiency>4</heat_efficiency>
<reversible>True</reversible>
<fuel_type>electricity</fuel_type>
<source_medium>Water</source_medium>
@ -1001,7 +1002,7 @@
<nominal_cooling_output/>
<minimum_cooling_output/>
<maximum_cooling_output/>
<cooling_efficiency/>
<cooling_efficiency>6</cooling_efficiency>
<electricity_efficiency/>
<source_temperature/>
<source_mass_flow/>
@ -1035,9 +1036,10 @@
<nominal_cell_temperature/>
<nominal_radiation/>
<standard_test_condition_cell_temperature/>
<standard_test_condition_radiation/>
<standard_test_condition_maximum_power/>
<cell_temperature_coefficient/>
<width>1.0</width>
<width>2.0</width>
<height>1.0</height>
<distribution_systems/>
<energy_storage_systems/>
@ -1180,7 +1182,8 @@
<insulation>
<material_id>1</material_id>
<insulationThickness>90.0</insulationThickness>
</insulation> <physical_characteristics>
</insulation>
<physical_characteristics>
<material_id>2</material_id>
<tankThickness>0</tankThickness>
<height>1.5</height>
@ -1309,89 +1312,6 @@
<systems>
<system>
<id>1</id>
<name>4 pipe storage equipped air source heat pump and gas boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>21</generation_id>
<generation_id>18</generation_id>
</components>
</system>
<system>
<id>2</id>
<name>4 pipe storage equipped air source heat pump and electrical boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>22</generation_id>
<generation_id>18</generation_id>
</components>
</system>
<system>
<id>3</id>
<name>4 pipe storage equipped ground source heat pump and gas boiler</name>
<schema>schemas/GSHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>21</generation_id>
<generation_id>19</generation_id>
</components>
</system>
<system>
<id>4</id>
<name>4 pipe storage equipped ground source heat pump and electrical boiler</name>
<schema>schemas/GSHP+TES+ElectricBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>22</generation_id>
<generation_id>19</generation_id>
</components>
</system>
<system>
<id>5</id>
<name>4 pipe storage equipped ground source heat pump and gas boiler</name>
<schema>schemas/WSHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>21</generation_id>
<generation_id>20</generation_id>
</components>
</system>
<system>
<id>6</id>
<name>4 pipe storage equipped ground source heat pump and electrical boiler</name>
<schema>schemas/WSHP+TES+ElectricBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
<demand>domestic_hot_water</demand>
</demands>
<components>
<generation_id>22</generation_id>
<generation_id>20</generation_id>
</components>
</system>
<system>
<id>7</id>
<name>Photovoltaic System</name>
<schema>schemas/PV.jpg</schema>
<demands>
@ -1402,8 +1322,8 @@
</components>
</system>
<system>
<id>8</id>
<name>4 pipe system with air source heat pump storage and gas boiler</name>
<id>2</id>
<name>4 pipe central air to water heat pump with storage tank and gas boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
@ -1415,20 +1335,177 @@
</components>
</system>
<system>
<id>9</id>
<name>4 pipe system with air source heat pump storage and electric boiler</name>
<id>3</id>
<name>4 pipe central air to water heat pump with storage tank and electric boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>22</generation_id>
<generation_id>18</generation_id>
<generation_id>23</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>4</id>
<name>4 pipe central ground to water heat pump with storage tank and gas boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>24</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>5</id>
<name>4 pipe central ground to water heat pump with storage tank and electric boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>24</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>6</id>
<name>4 pipe central water to water heat pump with storage tank and gas boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>25</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>7</id>
<name>4 pipe central water to water heat pump with storage tank and electric boiler</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
<demand>cooling</demand>
</demands>
<components>
<generation_id>25</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>8</id>
<name>district heating network with air to water heat pump gas boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>23</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>9</id>
<name>district heating network with air to water heat pump electrical boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>23</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>10</id>
<name>district heating network with ground to water heat pump gas boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>24</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>11</id>
<name>district heating network with ground to water heat pump electrical boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>24</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>12</id>
<name>district heating network with water to water heat pump gas boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>25</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>13</id>
<name>district heating network with water to water heat pump electrical boiler thermal storage tank</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>25</generation_id>
<generation_id>17</generation_id>
</components>
</system>
<system>
<id>14</id>
<name>Unitary air to water heat pump cooling system</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>23</generation_id>
</components>
</system>
<system>
<id>15</id>
<name>Unitary ground to water heat pump cooling system</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>24</generation_id>
</components>
</system>
<system>
<id>16</id>
<name>unitary water to water heat pump cooling system</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>25</generation_id>
</components>
</system>
<system>
<id>17</id>
<name>Domestic Hot Water Heat Pump with Coiled Storage</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
@ -1438,134 +1515,103 @@
<generation_id>27</generation_id>
</components>
</system>
<system>
<id>11</id>
<name>Central Heating System َASHP Gas-Boiler TES</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>heating</demand>
</demands>
<components>
<generation_id>23</generation_id>
<generation_id>16</generation_id>
</components>
</system>
<system>
<id>12</id>
<name>Unitary ASHP Cooling System</name>
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
<demands>
<demand>cooling</demand>
</demands>
<components>
<generation_id>23</generation_id>
</components>
</system>
</systems>
<system_archetypes>
<system_archetype id="1">
<name>PV+ASHP+GasBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>1</system_id>
<system_id>10</system_id>
</systems>
</system_archetype>
<system_archetype id="2">
<name>PV+ASHP+ElectricBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>2</system_id>
</systems>
</system_archetype>
<system_archetype id="3">
<name>PV+GSHP+GasBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>3</system_id>
</systems>
</system_archetype>
<system_archetype id="4">
<name>PV+GSHP+ElectricBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>4</system_id>
</systems>
</system_archetype>
<system_archetype id="5">
<name>PV+WSHP+GasBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>5</system_id>
</systems>
</system_archetype>
<system_archetype id="6">
<name>PV+WSHP+ElectricBoiler+TES</name>
<systems>
<system_id>7</system_id>
<system_id>6</system_id>
</systems>
</system_archetype>
<system_archetype id="7">
<name>ASHP+GasBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Air to Water Heat Pump and Gas Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>2</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="8">
<name>ASHP+ElectricBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Air to Water Heat Pump and electrical Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>3</system_id>
<system_id>8</system_id>
</systems>
</system_archetype>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Ground to Water Heat Pump and Gas Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>4</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Ground to Water Heat Pump and electrical Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>5</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Water to Water Heat Pump and Gas Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>6</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Water to Water Heat Pump and electrical Boiler with Independent Water Heating and PV</name>
<systems>
<system_id>1</system_id>
<system_id>7</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Air to Water Heat Pump and Gas Boiler with Independent Water Heating</name>
<systems>
<system_id>2</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="9">
<name>GSHP+GasBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Air to Water Heat Pump and electrical Boiler with Independent Water Heating</name>
<systems>
<system_id>3</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="10">
<name>GSHP+ElectricBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Ground to Water Heat Pump and Gas Boiler with Independent Water Heating</name>
<systems>
<system_id>4</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="11">
<name>WSHP+GasBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Ground to Water Heat Pump and electrical Boiler with Independent Water Heating</name>
<systems>
<system_id>5</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="12">
<name>WSHP+ElectricBoiler+TES</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Water to Water Heat Pump and Gas Boiler with Independent Water Heating</name>
<systems>
<system_id>6</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="13">
<name>PV+4Pipe+DHW</name>
<system_archetype cluster_id="1">
<name>Central 4 Pipes Water to Water Heat Pump and electrical Boiler with Independent Water Heating</name>
<systems>
<system_id>7</system_id>
<system_id>8</system_id>
<system_id>10</system_id>
<system_id>17</system_id>
</systems>
</system_archetype>
<system_archetype id="14">
<name>Central Heating+Unitary Cooling+Unitary DHW</name>
<system_archetype cluster_id="2">
<name>Rooftop PV System</name>
<systems>
<system_id>10</system_id>
<system_id>11</system_id>
<system_id>12</system_id>
</systems>
</system_archetype>
<system_archetype id="15">
<name>Central Heating+Unitary Cooling+Unitary DHW+PV</name>
<systems>
<system_id>7</system_id>
<system_id>10</system_id>
<system_id>11</system_id>
<system_id>12</system_id>
<system_id>1</system_id>
</systems>
</system_archetype>
</system_archetypes>

View File

@ -7,6 +7,9 @@ Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concord
Oriol Gavalda Torrellas oriol.gavalda@concordia.ca
"""
import copy
import datetime
import glob
import os
from pathlib import Path
from geomeppy import IDF
import hub.helpers.constants as cte
@ -275,11 +278,12 @@ class Idf:
_kwargs[f'Field_{counter + 2}'] = 'Until: 24:00,0.0'
self._idf.newidfobject(self._COMPACT_SCHEDULE, **_kwargs)
def _write_schedules_file(self, usage, schedule):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage}.csv').resolve())
with open(file_name, 'w', encoding='utf8') as file:
for value in schedule.values:
file.write(f'{str(value)},\n')
def _write_schedules_file(self, schedule, usage):
file_name = str((Path(self._output_path) / f'{schedule.type} schedules {usage.replace("/","_")}.csv').resolve())
if not Path(file_name).exists():
with open(file_name, 'w', encoding='utf8') as file:
for value in schedule.values:
file.write(f'{str(value)},\n')
return Path(file_name).name
def _add_file_schedule(self, usage, schedule, file_name):
@ -304,7 +308,7 @@ class Idf:
for schedule in self._idf.idfobjects[self._FILE_SCHEDULE]:
if schedule.Name == f'{schedule_type} schedules {usage}':
return
file_name = self._write_schedules_file(usage, new_schedules[0])
file_name = self._write_schedules_file(new_schedules[0], usage)
self._add_file_schedule(usage, new_schedules[0], file_name)
return
@ -321,7 +325,7 @@ class Idf:
if construction.Name == vegetation_name:
return
else:
if construction.Name == thermal_boundary.construction_name:
if construction.Name == f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}':
return
if thermal_boundary.layers is None:
for material in self._idf.idfobjects[self._MATERIAL]:
@ -340,7 +344,8 @@ class Idf:
for i in range(0, len(layers) - 1):
_kwargs[f'Layer_{i + 2}'] = layers[i].material_name
else:
_kwargs = {'Name': thermal_boundary.construction_name, 'Outside_Layer': layers[0].material_name}
_kwargs = {'Name': f'{thermal_boundary.construction_name} {thermal_boundary.parent_surface.type}',
'Outside_Layer': layers[0].material_name}
for i in range(1, len(layers) - 1):
_kwargs[f'Layer_{i + 1}'] = layers[i].material_name
self._idf.newidfobject(self._CONSTRUCTION, **_kwargs)
@ -470,7 +475,7 @@ class Idf:
Air_Changes_per_Hour=_air_change
)
def _add_dhw(self, thermal_zone, zone_name):
def _add_dhw(self, thermal_zone, zone_name, usage):
peak_flow_rate = thermal_zone.domestic_hot_water.peak_flow * thermal_zone.total_floor_area
self._idf.newidfobject(self._DHW,
Name=f'DHW {zone_name}',
@ -478,7 +483,7 @@ class Idf:
Flow_Rate_Fraction_Schedule_Name=f'DHW_prof schedules {thermal_zone.usage_name}',
Target_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Hot_Water_Supply_Temperature_Schedule_Name=f'DHW_temp schedules {thermal_zone.usage_name}',
Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {zone_name}',
Cold_Water_Supply_Temperature_Schedule_Name=f'cold_temp schedules {usage}',
EndUse_Subcategory=f'DHW {zone_name}',
Zone_Name=zone_name
)
@ -512,19 +517,25 @@ class Idf:
self._rename_building(self._city.name)
self._lod = self._city.level_of_detail.geometry
for building in self._city.buildings:
is_target = building.name in self._target_buildings or building.name in self._adjacent_buildings
for internal_zone in building.internal_zones:
if internal_zone.thermal_zones_from_internal_zones is None:
self._target_buildings.remoidf_surface_typeve(building.name)
is_target = False
continue
for thermal_zone in internal_zone.thermal_zones_from_internal_zones:
for thermal_boundary in thermal_zone.thermal_boundaries:
for thermal_boundary in thermal_zone.thermal_boundaries:
self._add_construction(thermal_boundary)
if thermal_boundary.parent_surface.vegetation is not None:
self._add_vegetation_material(thermal_boundary.parent_surface.vegetation)
for thermal_opening in thermal_boundary.thermal_openings:
self._add_window_construction_and_material(thermal_opening)
usage = thermal_zone.usage_name
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
if is_target:
start = datetime.datetime.now()
service_temperature = thermal_zone.domestic_hot_water.service_temperature
usage = thermal_zone.usage_name
_new_schedules = self._create_infiltration_schedules(thermal_zone)
self._add_schedules(usage, 'Infiltration', _new_schedules)
_new_schedules = self._create_ventilation_schedules(thermal_zone)
@ -536,11 +547,10 @@ class Idf:
self._add_schedules(usage, 'Lighting', thermal_zone.lighting.schedules)
self._add_schedules(usage, 'Appliance', thermal_zone.appliances.schedules)
self._add_schedules(usage, 'DHW_prof', thermal_zone.domestic_hot_water.schedules)
_new_schedules = self._create_yearly_values_schedules('cold_temp',
building.cold_water_temperature[cte.HOUR])
self._add_schedules(building.name, 'cold_temp', _new_schedules)
value = thermal_zone.domestic_hot_water.service_temperature
_new_schedules = self._create_constant_value_schedules('DHW_temp', value)
_new_schedules = self._create_yearly_values_schedules('cold_temp', building.cold_water_temperature[cte.HOUR])
self._add_schedules(usage, 'cold_temp', _new_schedules)
_new_schedules = self._create_constant_value_schedules('DHW_temp', service_temperature)
self._add_schedules(usage, 'DHW_temp', _new_schedules)
_occ = thermal_zone.occupancy
if _occ.occupancy_density == 0:
@ -557,11 +567,13 @@ class Idf:
self._add_occupancy(thermal_zone, building.name)
self._add_lighting(thermal_zone, building.name)
self._add_appliances(thermal_zone, building.name)
self._add_dhw(thermal_zone, building.name)
self._add_dhw(thermal_zone, building.name, usage)
if self._export_type == "Surfaces":
if building.name in self._target_buildings or building.name in self._adjacent_buildings:
if is_target:
if building.thermal_zones_from_internal_zones is not None:
start = datetime.datetime.now()
self._add_surfaces(building, building.name)
print(f'add surfaces {datetime.datetime.now() - start}')
else:
self._add_pure_geometry(building, building.name)
else:
@ -717,7 +729,7 @@ class Idf:
if boundary.parent_surface.vegetation is not None:
construction_name = f'{boundary.construction_name}_{boundary.parent_surface.vegetation.name}'
else:
construction_name = boundary.construction_name
construction_name = f'{boundary.construction_name} {boundary.parent_surface.type}'
_kwargs['Construction_Name'] = construction_name
surface = self._idf.newidfobject(self._SURFACE, **_kwargs)

View File

@ -270,7 +270,7 @@ class InselMonthlyEnergyBalance:
global_irradiance = surface.global_irradiance[cte.MONTH]
for j in range(0, len(global_irradiance)):
parameters.append(f'{j + 1} '
f'{global_irradiance[j] * cte.WATTS_HOUR_TO_JULES / 24 / _NUMBER_DAYS_PER_MONTH[j]}')
f'{global_irradiance[j] / 24 / _NUMBER_DAYS_PER_MONTH[j]}')
else:
for j in range(0, 12):
parameters.append(f'{j + 1} 0.0')

View File

@ -310,7 +310,8 @@ LATENT = 'Latent'
LITHIUMION = 'Lithium Ion'
NICD = 'NiCd'
LEADACID = 'Lead Acid'
THERMAL = 'thermal'
ELECTRICAL = 'electrical'
# Geometry
EPSILON = 0.0000001

View File

@ -43,6 +43,7 @@ class MontrealFutureEnergySystemParameters:
archetype_name = building.energy_systems_archetype_name
try:
archetype = self._search_archetypes(montreal_custom_catalog, archetype_name)
building.energy_systems_archetype_cluster_id = archetype.cluster_id
except KeyError:
logging.error('Building %s has unknown energy system archetype for system name %s', building.name,
archetype_name)
@ -103,15 +104,21 @@ class MontrealFutureEnergySystemParameters:
_generation_system.nominal_radiation = archetype_generation_system.nominal_radiation
_generation_system.standard_test_condition_cell_temperature = archetype_generation_system.standard_test_condition_cell_temperature
_generation_system.standard_test_condition_maximum_power = archetype_generation_system.standard_test_condition_maximum_power
_generation_system.standard_test_condition_radiation = archetype_generation_system.standard_test_condition_radiation
_generation_system.cell_temperature_coefficient = archetype_generation_system.cell_temperature_coefficient
_generation_system.width = archetype_generation_system.width
_generation_system.height = archetype_generation_system.height
_generation_system.tilt_angle = self._city.latitude
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_generation_system.energy_storage_systems = [_generic_storage_system]
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = _storage_systems
else:
_generation_system = NonPvGenerationSystem()
_generation_system.name = archetype_generation_system.name

View File

@ -1,157 +0,0 @@
"""
Energy System catalog heat generation system
SPDX - License - Identifier: LGPL - 3.0 - or -later
Copyright © 2023 Concordia CERC group
Project Coder Saeed Ranjbar saeed.ranjbar@concordia.ca
Code contributors: Pilar Monsalvete Alvarez de Uribarri pilar.monsalvete@concordia.ca
"""
import logging
import copy
from hub.catalog_factories.energy_systems_catalog_factory import EnergySystemsCatalogFactory
from hub.city_model_structure.energy_systems.energy_system import EnergySystem
from hub.city_model_structure.energy_systems.distribution_system import DistributionSystem
from hub.city_model_structure.energy_systems.non_pv_generation_system import NonPvGenerationSystem
from hub.city_model_structure.energy_systems.pv_generation_system import PvGenerationSystem
from hub.city_model_structure.energy_systems.electrical_storage_system import ElectricalStorageSystem
from hub.city_model_structure.energy_systems.thermal_storage_system import ThermalStorageSystem
from hub.city_model_structure.energy_systems.emission_system import EmissionSystem
from hub.helpers.dictionaries import Dictionaries
class NorthAmericaCustomEnergySystemParameters:
"""
MontrealCustomEnergySystemParameters class
"""
def __init__(self, city):
self._city = city
def enrich_buildings(self):
"""
Returns the city with the system parameters assigned to the buildings
:return:
"""
city = self._city
montreal_custom_catalog = EnergySystemsCatalogFactory('north_america').catalog
if city.generic_energy_systems is None:
_generic_energy_systems = {}
else:
_generic_energy_systems = city.generic_energy_systems
for building in city.buildings:
archetype_name = building.energy_systems_archetype_name
try:
archetype = self._search_archetypes(montreal_custom_catalog, archetype_name)
except KeyError:
logging.error('Building %s has unknown energy system archetype for system name %s', building.name,
archetype_name)
continue
if archetype.name not in _generic_energy_systems:
_generic_energy_systems = self._create_generic_systems_list(archetype, _generic_energy_systems)
city.generic_energy_systems = _generic_energy_systems
self._assign_energy_systems_to_buildings(city)
@staticmethod
def _search_archetypes(catalog, name):
archetypes = catalog.entries('archetypes')
for building_archetype in archetypes:
if str(name) == str(building_archetype.name):
return building_archetype
raise KeyError('archetype not found')
def _create_generic_systems_list(self, archetype, _generic_energy_systems):
building_systems = []
for archetype_system in archetype.systems:
energy_system = EnergySystem()
_hub_demand_types = []
for demand_type in archetype_system.demand_types:
_hub_demand_types.append(Dictionaries().montreal_demand_type_to_hub_energy_demand_type[demand_type])
energy_system.name = archetype_system.name
energy_system.demand_types = _hub_demand_types
energy_system.configuration_schema = archetype_system.configuration_schema
energy_system.generation_systems = self._create_generation_systems(archetype_system)
if energy_system.distribution_systems is not None:
energy_system.distribution_systems = self._create_distribution_systems(archetype_system)
building_systems.append(energy_system)
_generic_energy_systems[archetype.name] = building_systems
return _generic_energy_systems
@staticmethod
def _create_generation_systems(archetype_system):
_generation_systems = []
for archetype_generation_system in archetype_system.generation_systems:
if archetype_generation_system.system_type == 'PV system':
_generation_system = PvGenerationSystem()
_type = 'PV system'
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().montreal_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
_generation_system.energy_storage_systems = [_generic_storage_system]
else:
_generation_system = NonPvGenerationSystem()
_type = archetype_generation_system.system_type
_generation_system.system_type = Dictionaries().montreal_generation_system_to_hub_energy_generation_system[_type]
_fuel_type = Dictionaries().north_america_custom_fuel_to_hub_fuel[archetype_generation_system.fuel_type]
_generation_system.fuel_type = _fuel_type
_generation_system.source_types = archetype_generation_system.source_medium
_generation_system.heat_efficiency = archetype_generation_system.heat_efficiency
_generation_system.cooling_efficiency = archetype_generation_system.cooling_efficiency
_generation_system.electricity_efficiency = archetype_generation_system.electricity_efficiency
_generic_storage_system = None
if archetype_generation_system.energy_storage_systems is not None:
_storage_systems = []
for storage_system in archetype_generation_system.energy_storage_systems:
if storage_system.type_energy_stored == 'electrical':
_generic_storage_system = ElectricalStorageSystem()
_generic_storage_system.type_energy_stored = 'electrical'
else:
_generic_storage_system = ThermalStorageSystem()
_generic_storage_system.type_energy_stored = 'thermal'
_storage_systems.append(_generic_storage_system)
_generation_system.energy_storage_systems = [_storage_systems]
if archetype_generation_system.dual_supply_capability:
_generation_system.dual_supply_capability = True
_generation_systems.append(_generation_system)
return _generation_systems
@staticmethod
def _create_distribution_systems(archetype_system):
_distribution_systems = []
for archetype_distribution_system in archetype_system.distribution_systems:
_distribution_system = DistributionSystem()
_distribution_system.type = archetype_distribution_system.type
_distribution_system.distribution_consumption_fix_flow = \
archetype_distribution_system.distribution_consumption_fix_flow
_distribution_system.distribution_consumption_variable_flow = \
archetype_distribution_system.distribution_consumption_variable_flow
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
_emission_system = None
if archetype_distribution_system.emission_systems is not None:
_emission_system = EmissionSystem()
_distribution_system.emission_systems = [_emission_system]
_distribution_systems.append(_distribution_system)
return _distribution_systems
@staticmethod
def _assign_energy_systems_to_buildings(city):
for building in city.buildings:
_building_energy_systems = []
energy_systems_cluster_name = building.energy_systems_archetype_name
if str(energy_systems_cluster_name) == 'nan':
break
_generic_building_energy_systems = city.generic_energy_systems[energy_systems_cluster_name]
for _generic_building_energy_system in _generic_building_energy_systems:
_building_energy_systems.append(copy.deepcopy(_generic_building_energy_system))
building.energy_systems = _building_energy_systems

View File

@ -6,17 +6,15 @@ Project Coder Pilar Monsalvete pilar.monsalvete@concordi.
Code contributors: Peter Yefi peteryefi@gmail.com
"""
from pathlib import Path
from hub.helpers.utils import validate_import_export_type
from hub.imports.energy_systems.montreal_custom_energy_system_parameters import MontrealCustomEnergySystemParameters
from hub.imports.energy_systems.north_america_custom_energy_system_parameters import NorthAmericaCustomEnergySystemParameters
from hub.imports.energy_systems.montreal_future_energy_systems_parameters import MontrealFutureEnergySystemParameters
class EnergySystemsFactory:
"""
EnergySystemsFactory class
"""
def __init__(self, handler, city, base_path=None):
if base_path is None:
base_path = Path(Path(__file__).parent.parent / 'data/energy_systems')
@ -34,15 +32,6 @@ class EnergySystemsFactory:
for building in self._city.buildings:
building.level_of_detail.energy_systems = 1
def _north_america(self):
"""
Enrich the city by using north america custom energy systems catalog information
"""
NorthAmericaCustomEnergySystemParameters(self._city).enrich_buildings()
self._city.level_of_detail.energy_systems = 2
for building in self._city.buildings:
building.level_of_detail.energy_systems = 2
def _montreal_future(self):
"""
Enrich the city by using north america custom energy systems catalog information

View File

@ -156,6 +156,8 @@ class Geojson:
building_aliases = []
if 'id' in feature:
building_name = feature['id']
elif 'id' in feature['properties']:
building_name = feature['properties']['id']
else:
building_name = uuid.uuid4()
if self._aliases_field is not None:

95
main.py
View File

@ -1,95 +0,0 @@
from pathlib import Path
from scripts.district_heating_network.directory_manager import DirectoryManager
import subprocess
from scripts.ep_run_enrich import energy_plus_workflow
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
from scripts.geojson_creator import process_geojson
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing import SystemSizing
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
from scripts.energy_system_retrofit_results import consumption_data, cost_data
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_feasibility import pv_feasibility
import matplotlib.pyplot as plt
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
from scripts.district_heating_network.road_processor import road_processor
from scripts.district_heating_network.district_heating_factory import DistrictHeatingFactory
base_path = Path(__file__).parent
dir_manager = DirectoryManager(base_path)
# Input files directory
input_files_path = dir_manager.create_directory('input_files')
geojson_file_path = input_files_path / 'output_buildings.geojson'
# Output files directory
output_path = dir_manager.create_directory('out_files')
# Subdirectories for output files
energy_plus_output_path = dir_manager.create_directory('out_files/energy_plus_outputs')
simulation_results_path = dir_manager.create_directory('out_files/simulation_results')
sra_output_path = dir_manager.create_directory('out_files/sra_outputs')
cost_analysis_output_path = dir_manager.create_directory('out_files/cost_analysis')
# Select city area
location = [45.53067276979674, -73.70234652694087]
process_geojson(x=location[1], y=location[0], diff=0.001)
# Create city object
city = GeometryFactory(file_type='geojson',
path=geojson_file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
# WeatherFactory('epw', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# city.buildings[0].function = cte.COMMERCIAL
# ConstructionFactory('nrcan', city).enrich()
# UsageFactory('nrcan', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# city.buildings[0].function = cte.MEDIUM_OFFICE
# ConstructionFactory('nrcan', city).enrich()
# UsageFactory('nrcan', city).enrich()
# energy_plus_workflow(city, energy_plus_output_path)
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
# categories = list(data.keys())
# values = list(data.values())
# # Plotting
# fig, ax = plt.subplots(figsize=(10, 6), dpi=96)
# fig.suptitle('Impact of different usages on yearly heating demand', fontsize=16, weight='bold', alpha=.8)
# ax.bar(categories, values, color=['#2196f3', '#ff5a5f', '#4caf50'], width=0.6, zorder=2)
# ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
# ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
# ax.set_xlabel('Building Type', fontsize=12, labelpad=10)
# ax.set_ylabel('Energy Consumption (MWh)', fontsize=14, labelpad=10)
# ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
# ax.set_xticks(np.arange(len(categories)))
# ax.set_xticklabels(categories, rotation=45, ha='right')
# ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=0)
# ax.spines[['top', 'left', 'bottom']].set_visible(False)
# ax.spines['right'].set_linewidth(1.1)
# # Set a white background
# fig.patch.set_facecolor('white')
# # Adjust the margins around the plot area
# plt.subplots_adjust(left=0.1, right=0.9, top=0.85, bottom=0.25)
# # Save the plot
# plt.savefig('plot_nrcan.png', bbox_inches='tight')
# plt.close()
print('test')

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

View File

@ -1,73 +0,0 @@
import pandas as pd
from scripts.geojson_creator import process_geojson
from pathlib import Path
import subprocess
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.solar_angles import CitySolarAngles
from scripts.ep_run_enrich import energy_plus_workflow
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_sizing_and_simulation import PVSizingSimulation
# Specify the GeoJSON file path
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
# Specify the output path for the PDF file
output_path = (Path(__file__).parent / 'out_files').resolve()
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=file_path,
height_field='height',
year_of_construction_field='year_of_construction',
function_field='function',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
# Enrich city data
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
energy_plus_workflow(city, output_path=output_path)
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
df = pd.DataFrame()
df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)',
'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)']
for building in city.buildings:
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
pv_sizing_simulation = PVSizingSimulation(building,
solar_angles,
tilt_angle=45,
module_height=1,
module_width=2,
ghi=ghi)
pv_sizing_simulation.pv_output()
yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000
yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000
yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3)
yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5)
yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000
roof_area = building.roofs[0].perimeter_area
used_roof = pv_sizing_simulation.available_space()
number_of_pv_panels = pv_sizing_simulation.total_number_of_panels
yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / 1000
df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area,
used_roof, number_of_pv_panels, yearly_pv]
df.to_csv(output_path / 'pv.csv')

View File

@ -1,63 +0,0 @@
import glob
import os
import sys
from pathlib import Path
import csv
from hub.imports.geometry_factory import GeometryFactory
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.exports.energy_building_exports_factory import EnergyBuildingsExportsFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.results_factory import ResultFactory
sys.path.append('./')
try:
file_path = (Path(__file__).parent.parent / 'input_files' / 'eilat.geojson')
out_path = (Path(__file__).parent.parent / 'out_files')
files = glob.glob(f'{out_path}/*')
for file in files:
if file != '.gitignore':
os.remove(file)
print('[simulation start]')
city = GeometryFactory('geojson',
path=file_path,
height_field='heightmax',
year_of_construction_field='ANNEE_CONS',
function_field='CODE_UTILI',
function_to_hub=Dictionaries().eilat_function_to_hub_function).city
print(f'city created from {file_path}')
ConstructionFactory('eilat', city).enrich()
print('enrich constructions... done')
UsageFactory('eilat', city).enrich()
print('enrich usage... done')
WeatherFactory('epw', city).enrich()
print('enrich weather... done')
area = 0
volume = 0
for building in city.buildings:
volume = building.volume
for ground in building.grounds:
area += ground.perimeter_polygon.area
print('exporting:')
_idf = EnergyBuildingsExportsFactory('idf', city, out_path).export()
print(' idf exported...')
_idf.run()
csv_file = str((out_path / f'{city.name}_out.csv').resolve())
eso_file = str((out_path / f'{city.name}_out.eso').resolve())
idf_file = str((out_path / f'{city.name}.idf').resolve())
obj_file = str((out_path / f'{city.name}.obj').resolve())
#ResultFactory('energy_plus_multiple_buildings', city, out_path).enrich()
except Exception as ex:
print(ex)
print('error: ', ex)
print('[simulation abort]')
sys.stdout.flush()

View File

@ -1,26 +0,0 @@
import random
import numpy as np
import hub.helpers.constants as cte
class EnergySystemOptimizer:
def __init__(self, building, objectives, population_size=20, number_of_generations=100, crossover_rate=0.8,
mutation_rate=0.1):
self.building = building
self.objectives = objectives
self.population_size = population_size
self.num_gen = number_of_generations
self.crossover_rate = crossover_rate
self.mutation_rate = mutation_rate
# Initialize population
def initialize_population(self):
population = []
for _ in range(self.population_size):
individual = [
random.uniform(0.1, 10.0), # hp_size
random.uniform(0.1, 10.0), # boiler_size
random.uniform(0.1, 10.0), # tes_size
random.uniform(40, 60) # cutoff_temp
]
population.append(individual)
return population

View File

@ -1,16 +0,0 @@
# Objective functions
MINIMUM_LCC = 1
MINIMUM_EC = 2
MINIMUM_EMISSIONS = 3
MINIMUM_LCC_MINIMUM_EC = 4
MINIMUM_LCC_MINIMUM_EMISSIONS = 5
MINIMUM_EC_MINIMUM_EMISSIONS = 6
MINIMUM_LCC_MINIMUM_EC_MINIMUM_EMISSIONS = 7
OBJECTIVE_FUNCTIONS = [MINIMUM_LCC,
MINIMUM_EC,
MINIMUM_EMISSIONS,
MINIMUM_LCC_MINIMUM_EC,
MINIMUM_LCC_MINIMUM_EMISSIONS,
MINIMUM_EC_MINIMUM_EMISSIONS,
MINIMUM_LCC_MINIMUM_EC_MINIMUM_EMISSIONS]

View File

@ -1,378 +0,0 @@
import math
import csv
import hub.helpers.constants as cte
from hub.helpers.monthly_values import MonthlyValues
class Archetype1:
def __init__(self, building, output_path):
self._building = building
self._name = building.name
self._pv_system = building.energy_systems[1]
self._hvac_system = building.energy_systems[0]
self._dhw_system = building.energy_systems[-1]
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self._hourly_heating_demand = [0] + [demand / 3600 for demand in building.heating_demand[cte.HOUR]]
self._hourly_cooling_demand = [demand / 3600 for demand in building.cooling_demand[cte.HOUR]]
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
building.domestic_hot_water_heat_demand[cte.HOUR]]
self._output_path = output_path
self._t_out = [0] + building.external_temperature[cte.HOUR]
self.results = {}
self.dt = 900
def hvac_sizing(self):
storage_factor = 3
heat_pump = self._hvac_system.generation_systems[0]
boiler = self._hvac_system.generation_systems[1]
thermal_storage = heat_pump.energy_storage_systems[0]
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
thermal_storage.volume = round(
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
return heat_pump, boiler, thermal_storage
def dhw_sizing(self):
storage_factor = 3
dhw_hp = self._dhw_system.generation_systems[0]
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
dhw_hp.source_temperature = self._t_out
dhw_tes = dhw_hp.energy_storage_systems[0]
dhw_tes.volume = round(
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
return dhw_hp, dhw_tes
def heating_system_simulation(self):
hp, boiler, tes = self.hvac_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
# Heating System Simulation
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
"hp_electricity", "boiler_gas", "boiler_consumption", "t_sup_boiler", "heating_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
hp_electricity, boiler_gas, boiler_consumption, t_sup_boiler, heating_consumption) = [variables[name] for name in
variable_names]
t_tank[0] = 30
dt = 3600
hp_heating_cap = hp.nominal_heat_output
hp_efficiency = float(hp.heat_efficiency)
boiler_efficiency = float(boiler.heat_efficiency)
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
for i in range(len(demand) - 1):
t_tank[i + 1] = (t_tank[i] +
((m_ch[i] * (t_sup_hp[i] - t_tank[i])) +
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
m_dis[i] * (t_tank[i] - t_ret[i])) * (dt / (cte.WATER_DENSITY * v)))
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 5)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 3)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
if q_hp[i + 1] > 0:
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_tank_fahrenheit +
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_out_fahrenheit +
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
if demand[i + 1] == 0:
m_dis[i + 1], t_return, t_ret[i + 1] = 0, t_tank[i + 1], t_tank[i + 1]
else:
if demand[i + 1] > 0.5 * self._heating_peak_load / dt:
factor = 8
else:
factor = 4
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * dt)
t_return = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
if t_return >= 25:
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
q_boiler[i + 1] = 0
t_sup_boiler[i + 1] = t_tank[i + 1]
else:
t_ret[i + 1] = 25
t_sup_boiler[i + 1] = t_ret[i + 1] + (demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY))
q_boiler[i + 1] = m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * (t_sup_boiler[i + 1] - t_tank[i + 1])
boiler_gas[i + 1] = (q_boiler[i + 1] * dt) / cte.NATURAL_GAS_LHV
boiler_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_consumption]
hp_hourly = []
boiler_hourly = []
boiler_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
boiler_sum += boiler_consumption_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
boiler_hourly.append(boiler_sum)
hp_sum = 0
boiler_sum = 0
hp.energy_consumption[cte.HEATING] = {}
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.HEATING][cte.HOUR])
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
boiler.energy_consumption[cte.HEATING] = {}
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
boiler.energy_consumption[cte.HEATING][cte.HOUR])
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
self.results['Heating Demand (W)'] = demand
self.results['HP Heat Output (W)'] = q_hp
self.results['HP Source Temperature'] = t_out
self.results['HP Supply Temperature'] = t_sup_hp
self.results['HP COP'] = hp_cop
self.results['HP Electricity Consumption (W)'] = hp_electricity
self.results['Boiler Heat Output (W)'] = q_boiler
self.results['Boiler Supply Temperature'] = t_sup_boiler
self.results['Boiler Gas Consumption'] = boiler_consumption
self.results['TES Temperature'] = t_tank
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
self.results['Heating Loop Return Temperature'] = t_ret
return hp_hourly, boiler_hourly
def cooling_system_simulation(self):
hp = self.hvac_sizing()[0]
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
cooling_efficiency = float(hp.cooling_efficiency)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
t_ret[0] = 13
for i in range(1, len(demand)):
if demand[i] > 0.15 * self._cooling_peak_load:
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
if t_ret[i - 1] >= 13:
if demand[i] < 0.25 * self._cooling_peak_load:
q_hp[i] = 0.25 * hp.nominal_cooling_output
elif demand[i] < 0.5 * self._cooling_peak_load:
q_hp[i] = 0.5 * hp.nominal_cooling_output
else:
q_hp[i] = hp.nominal_cooling_output
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
if m[i] == 0:
t_ret[i] = t_sup_hp[i]
else:
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
m[i] = 0
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
t_ret[i] = t_ret[i - 1]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
eer_curve_coefficients[3] * t_out_fahrenheit +
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
eer_curve_coefficients[
5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
hp_electricity[i] = q_hp[i] / cooling_efficiency
else:
hp_cop[i] = 0
hp_electricity[i] = 0
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
hp_hourly = []
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
if (i - 1) % number_of_ts == 0:
hp_hourly.append(hp_sum)
hp_sum = 0
hp.energy_consumption[cte.COOLING] = {}
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.COOLING][cte.HOUR])
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
self.results['Cooling Demand (W)'] = demand
self.results['HP Cooling Output (W)'] = q_hp
self.results['HP Cooling Supply Temperature'] = t_sup_hp
self.results['HP Cooling COP'] = hp_cop
self.results['HP Electricity Consumption'] = hp_electricity
self.results['Cooling Loop Flow Rate (kg/s)'] = m
self.results['Cooling Loop Return Temperature'] = t_ret
return hp_hourly
def dhw_system_simulation(self):
hp, tes = self.dhw_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
[variables[name] for name in variable_names]
t_tank[0] = 70
v_dhw[0] = tes.volume
hp_heating_cap = hp.nominal_heat_output
hp_delta_t = 8
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
freshwater_temperature = 18
for i in range(len(demand) - 1):
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if t_tank[i] < 62:
q_hp[i] = hp_heating_cap
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if demand[i] > 0:
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
m_refill[i] = m_dis[i]
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
if t_tank[i] < 60:
q_coil[i] = float(tes.heating_coil_capacity)
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if q_hp[i] > 0:
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
else:
m_ch[i] = 0
t_sup_hp[i] = t_tank[i]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_out[i] +
cop_curve_coefficients[2] * t_out[i] ** 2 +
cop_curve_coefficients[3] * t_tank[i] +
cop_curve_coefficients[4] * t_tank[i] ** 2 +
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
hp_electricity[i] = q_hp[i] / hp_cop[i]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
coil_hourly = []
coil_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
coil_sum = 0
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
tes.heating_coil_energy_consumption = {}
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.HOUR])
tes.heating_coil_energy_consumption[cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
tes.temperature = t_tank
self.results['DHW Demand (W)'] = demand
self.results['DHW HP Heat Output (W)'] = q_hp
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
self.results['DHW HP Source Temperature'] = t_out
self.results['DHW HP Supply Temperature'] = t_sup_hp
self.results['DHW HP COP'] = hp_cop
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
self.results['DHW TES Temperature'] = t_tank
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
self.results['DHW Flow Rate (kg/s)'] = m_dis
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
self.results['Available Water in Tank (m3)'] = v_dhw
return hp_hourly, coil_hourly
def enrich_buildings(self):
hp_heating, boiler_consumption = self.heating_system_simulation()
hp_cooling = self.cooling_system_simulation()
hp_dhw, heating_coil = self.dhw_system_simulation()
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
self._building.heating_consumption[cte.HOUR] = heating_consumption
self._building.heating_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
self._building.cooling_consumption[cte.HOUR] = hp_cooling
self._building.cooling_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
self._building.domestic_hot_water_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
self._building.domestic_hot_water_consumption[cte.YEAR] = [
sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
file_name = f'energy_system_simulation_results_{self._name}.csv'
with open(self._output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(self.results.keys())
# Write data
output_file.writerows(zip(*self.results.values()))

View File

@ -1,385 +0,0 @@
import math
import hub.helpers.constants as cte
import csv
from hub.helpers.monthly_values import MonthlyValues
class Archetype13:
def __init__(self, building, output_path, csv_output=True,):
self._building = building
self._name = building.name
self._pv_system = building.energy_systems[0]
self._hvac_system = building.energy_systems[1]
self._dhw_system = building.energy_systems[-1]
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
cte.WATER_DENSITY)
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
building.domestic_hot_water_heat_demand[cte.HOUR]]
self._output_path = output_path
self._t_out = building.external_temperature[cte.HOUR]
self.results = {}
self.dt = 900
self.csv_output = csv_output
def hvac_sizing(self):
storage_factor = 3
heat_pump = self._hvac_system.generation_systems[1]
boiler = self._hvac_system.generation_systems[0]
thermal_storage = boiler.energy_storage_systems[0]
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
thermal_storage.volume = round(
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
return heat_pump, boiler, thermal_storage
def dhw_sizing(self):
storage_factor = 3
dhw_hp = self._dhw_system.generation_systems[0]
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
dhw_hp.source_temperature = self._t_out
dhw_tes = dhw_hp.energy_storage_systems[0]
dhw_tes.volume = round(
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
return dhw_hp, dhw_tes
def heating_system_simulation(self):
hp, boiler, tes = self.hvac_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
"heating_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
[variables[name] for name in variable_names]
t_tank[0] = 55
hp_heating_cap = hp.nominal_heat_output
hp_efficiency = float(hp.heat_efficiency)
boiler_heating_cap = boiler.nominal_heat_output
hp_delta_t = 5
boiler_efficiency = float(boiler.heat_efficiency)
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
# storage temperature prediction
for i in range(len(demand) - 1):
t_tank[i + 1] = (t_tank[i] +
(m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
# hp operation
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
if q_hp[i + 1] > 0:
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_tank_fahrenheit +
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_out_fahrenheit +
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
# boiler operation
if q_hp[i + 1] > 0:
if t_sup_hp[i + 1] < 45:
q_boiler[i + 1] = boiler_heating_cap
elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
q_boiler[i + 1] = 0.5 * boiler_heating_cap
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
# storage discharging
if demand[i + 1] == 0:
m_dis[i + 1] = 0
t_ret[i + 1] = t_tank[i + 1]
else:
if demand[i + 1] > 0.5 * self._heating_peak_load:
factor = 8
else:
factor = 4
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor)
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
hp_hourly = []
boiler_hourly = []
boiler_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
boiler_sum += boiler_consumption_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
boiler_hourly.append(boiler_sum)
hp_sum = 0
boiler_sum = 0
hp.energy_consumption[cte.HEATING] = {}
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.HEATING][cte.HOUR])
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
boiler.energy_consumption[cte.HEATING] = {}
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
boiler.energy_consumption[cte.HEATING][cte.HOUR])
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
self.results['Heating Demand (W)'] = demand
self.results['HP Heat Output (W)'] = q_hp
self.results['HP Source Temperature'] = t_out
self.results['HP Supply Temperature'] = t_sup_hp
self.results['HP COP'] = hp_cop
self.results['HP Electricity Consumption (W)'] = hp_electricity
self.results['Boiler Heat Output (W)'] = q_boiler
self.results['Boiler Supply Temperature'] = t_sup_boiler
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
self.results['TES Temperature'] = t_tank
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
self.results['Heating Loop Return Temperature'] = t_ret
return hp_hourly, boiler_hourly
def cooling_system_simulation(self):
hp = self.hvac_sizing()[0]
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
cooling_efficiency = float(hp.cooling_efficiency)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
t_ret[0] = 13
for i in range(1, len(demand)):
if demand[i] > 0.15 * self._cooling_peak_load:
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
if t_ret[i - 1] >= 13:
if demand[i] < 0.25 * self._cooling_peak_load:
q_hp[i] = 0.25 * hp.nominal_cooling_output
elif demand[i] < 0.5 * self._cooling_peak_load:
q_hp[i] = 0.5 * hp.nominal_cooling_output
else:
q_hp[i] = hp.nominal_cooling_output
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
if m[i] == 0:
t_ret[i] = t_sup_hp[i]
else:
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
m[i] = 0
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
t_ret[i] = t_ret[i - 1]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
eer_curve_coefficients[3] * t_out_fahrenheit +
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
hp_electricity[i] = q_hp[i] / cooling_efficiency
else:
hp_cop[i] = 0
hp_electricity[i] = 0
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
hp_hourly = []
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
if (i - 1) % number_of_ts == 0:
hp_hourly.append(hp_sum)
hp_sum = 0
hp.energy_consumption[cte.COOLING] = {}
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.COOLING][cte.HOUR])
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
self.results['Cooling Demand (W)'] = demand
self.results['HP Cooling Output (W)'] = q_hp
self.results['HP Cooling Supply Temperature'] = t_sup_hp
self.results['HP Cooling COP'] = hp_cop
self.results['HP Electricity Consumption'] = hp_electricity
self.results['Cooling Loop Flow Rate (kg/s)'] = m
self.results['Cooling Loop Return Temperature'] = t_ret
return hp_hourly
def dhw_system_simulation(self):
hp, tes = self.dhw_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
[variables[name] for name in variable_names]
t_tank[0] = 70
v_dhw[0] = tes.volume
hp_heating_cap = hp.nominal_heat_output
hp_delta_t = 8
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
freshwater_temperature = 18
for i in range(len(demand) - 1):
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if t_tank[i] < 62:
q_hp[i] = hp_heating_cap
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if demand[i] > 0:
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
m_refill[i] = m_dis[i]
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
if t_tank[i] < 60:
q_coil[i] = float(tes.heating_coil_capacity)
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if q_hp[i] > 0:
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
else:
m_ch[i] = 0
t_sup_hp[i] = t_tank[i]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_out[i] +
cop_curve_coefficients[2] * t_out[i] ** 2 +
cop_curve_coefficients[3] * t_tank[i] +
cop_curve_coefficients[4] * t_tank[i] ** 2 +
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
hp_electricity[i] = q_hp[i] / hp_cop[i]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
coil_hourly = []
coil_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
coil_sum = 0
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
tes.heating_coil_energy_consumption = {}
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.HOUR])
tes.heating_coil_energy_consumption[cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
tes.temperature = t_tank
self.results['DHW Demand (W)'] = demand
self.results['DHW HP Heat Output (W)'] = q_hp
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
self.results['DHW HP Source Temperature'] = t_out
self.results['DHW HP Supply Temperature'] = t_sup_hp
self.results['DHW HP COP'] = hp_cop
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
self.results['DHW TES Temperature'] = t_tank
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
self.results['DHW Flow Rate (kg/s)'] = m_dis
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
self.results['Available Water in Tank (m3)'] = v_dhw
return hp_hourly, coil_hourly
def enrich_buildings(self):
hp_heating, boiler_consumption = self.heating_system_simulation()
hp_cooling = self.cooling_system_simulation()
hp_dhw, heating_coil = self.dhw_system_simulation()
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
self._building.heating_consumption[cte.HOUR] = heating_consumption
self._building.heating_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
self._building.cooling_consumption[cte.HOUR] = hp_cooling
self._building.cooling_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
self._building.domestic_hot_water_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
self._building.domestic_hot_water_consumption[cte.YEAR] = [
sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
if self.csv_output:
file_name = f'energy_system_simulation_results_{self._name}.csv'
with open(self._output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(self.results.keys())
# Write data
output_file.writerows(zip(*self.results.values()))

View File

@ -1,416 +0,0 @@
import math
import hub.helpers.constants as cte
import csv
from hub.helpers.monthly_values import MonthlyValues
import numpy as np
class Archetype13Stratified:
def __init__(self, building, output_path):
self._building = building
self._name = building.name
self._pv_system = building.energy_systems[0]
self._hvac_system = building.energy_systems[1]
self._dhw_system = building.energy_systems[-1]
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
cte.WATER_DENSITY)
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self._hourly_heating_demand = [demand / 3600 for demand in building.heating_demand[cte.HOUR]]
self._hourly_cooling_demand = [demand / 3600 for demand in building.cooling_demand[cte.HOUR]]
self._hourly_dhw_demand = [0] + building.domestic_hot_water_heat_demand[cte.HOUR]
self._output_path = output_path
self._t_out = building.external_temperature[cte.HOUR]
self.results = {}
self.dt = 300
def hvac_sizing(self):
storage_factor = 3
heat_pump = self._hvac_system.generation_systems[1]
boiler = self._hvac_system.generation_systems[0]
thermal_storage = boiler.energy_storage_systems[0]
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
thermal_storage.volume = round(
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
return heat_pump, boiler, thermal_storage
def dhw_sizing(self):
storage_factor = 3
dhw_hp = self._dhw_system.generation_systems[0]
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
dhw_hp.source_temperature = self._t_out
dhw_tes = dhw_hp.energy_storage_systems[0]
dhw_tes.volume = round(
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
return dhw_hp, dhw_tes
def heating_system_simulation_stratified(self):
hp, boiler, tes = self.hvac_sizing()
hp_efficiency = float(hp.heat_efficiency)
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(12)]
hp.source_temperature = self._t_out
t_out = [0] + [x for x in self._t_out for _ in range(12)]
variable_names = ["t_sup_hp", "t1", "t2", "t3", "t4", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler",
"hp_cop", "hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
"heating_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t1, t2, t3, t4, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
[variables[name] for name in variable_names]
t_tank[0] = 55
t1[0] = 55
t2[0] = 55
t3[0] = 55
t4[0] = 55
dt = 300
hp_heating_cap = hp.nominal_heat_output
boiler_heating_cap = boiler.nominal_heat_output
hp_delta_t = 5
boiler_efficiency = float(boiler.heat_efficiency)
v, h = float(tes.volume) / 4, float(tes.height) / 4
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua_side = u_tot * a_side
ua_top_bottom = u_tot * (a_top + a_side)
# storage temperature prediction
for i in range(len(demand) - 1):
t1[i + 1] = t1[i] + ((m_ch[i] * (t_sup_boiler[i] - t1[i])) + (
np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t1[i] - t2[i])) + (
ua_top_bottom * (t_out[i] - t1[i])) / cte.WATER_HEAT_CAPACITY - cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t1[i] - t2[i])) / (
cte.WATER_HEAT_CAPACITY * h)) * (dt / (cte.WATER_DENSITY * v))
t2[i + 1] = t2[i] + ((np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t2[i] - t3[i])) + (
ua_side * (t_out[i] - t2[i])) / cte.WATER_HEAT_CAPACITY - (cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t2[i] - t1[i])) / (cte.WATER_HEAT_CAPACITY * h)) - (
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t2[i] - t3[i])) / (cte.WATER_HEAT_CAPACITY * h)) + (
np.heaviside((m_ch[i] - m_dis[i]), 0) * (m_ch[i] - m_dis[i]) * (
t1[i] - t2[i]))) * (dt / (cte.WATER_DENSITY * v))
t3[i + 1] = t3[i] + ((np.heaviside((m_dis[i] - m_ch[i]), 0) * (m_ch[i] - m_dis[i]) * (t3[i] - t4[i])) + (
ua_side * (t_out[i] - t3[i])) / cte.WATER_HEAT_CAPACITY - (cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t3[i] - t2[i])) / (cte.WATER_HEAT_CAPACITY * h)) - (
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t3[i] - t4[i])) / (cte.WATER_HEAT_CAPACITY * h)) + (
np.heaviside((m_ch[i] - m_dis[i]), 0) * (m_ch[i] - m_dis[i]) * (
t2[i] - t3[i]))) * (dt / (cte.WATER_DENSITY * v))
t4[i + 1] = t4[i] + (np.heaviside((m_ch[i] - m_dis[i]), 0) * ((m_ch[i] - m_dis[i]) * (t3[i] - t4[i])) + (
ua_top_bottom * (t_out[i] - t4[-1])) / cte.WATER_HEAT_CAPACITY - m_dis[i] * ((t4[i] - t_ret[i])) - (
cte.WATER_THERMAL_CONDUCTIVITY * (a_top * (t4[i] - t3[i])) / (cte.WATER_HEAT_CAPACITY * h))) * (dt / (cte.WATER_DENSITY * v))
# hp operation
if t1[i + 1] < 40:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t4[i + 1]
elif 40 <= t1[i + 1] < 55 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t4[i + 1]
elif 40 <= t1[i + 1] < 55 and q_hp[i] > 0:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t4[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t4[i + 1]
t_tank_fahrenheit = 1.8 * t4[i + 1] + 32
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
if q_hp[i + 1] > 0:
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_tank_fahrenheit +
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_out_fahrenheit +
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
# boiler operation
if q_hp[i + 1] > 0:
if t_sup_hp[i + 1] < 45:
q_boiler[i + 1] = boiler_heating_cap
elif demand[i + 1] > 0.5 * self._heating_peak_load / dt:
q_boiler[i + 1] = 0.5 * boiler_heating_cap
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
# storage discharging
if demand[i + 1] == 0:
m_dis[i + 1] = 0
t_ret[i + 1] = t1[i + 1]
else:
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
factor = 8
else:
factor = 4
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
t_ret[i + 1] = t1[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
hp_electricity_wh = [x / 12 for x in hp_electricity]
boiler_consumption_wh = [x / 12 for x in boiler_energy_consumption]
hp_hourly = []
boiler_hourly = []
tes.temperature = {}
tes.temperature['layer_1'] = []
tes.temperature['layer_2'] = []
tes.temperature['layer_3'] = []
tes.temperature['layer_4'] = []
for i in range(1, len(demand), 12):
tes.temperature['layer_1'].append(t1[i])
tes.temperature['layer_2'].append(t2[i])
tes.temperature['layer_3'].append(t3[i])
tes.temperature['layer_4'].append(t4[i])
demand_modified = demand[1:]
hp_hourly.append(hp_electricity[1])
boiler_hourly.append(boiler_energy_consumption[1])
boiler_sum = 0
hp_sum = 0
for i in range(1, len(demand_modified) + 1):
hp_sum += hp_electricity_wh[i]
boiler_sum += boiler_consumption_wh[i]
if i % 12 == 0:
hp_hourly.append(hp_sum)
boiler_hourly.append(boiler_sum)
hp_sum = 0
boiler_sum = 0
hp.energy_consumption[cte.HEATING] = {}
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.HEATING][cte.HOUR])
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
boiler.energy_consumption[cte.HEATING] = {}
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
boiler.energy_consumption[cte.HEATING][cte.HOUR])
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
self.results['Heating Demand (W)'] = demand
self.results['HP Heat Output (W)'] = q_hp
self.results['HP Source Temperature'] = t_out
self.results['HP Supply Temperature'] = t_sup_hp
self.results['HP COP'] = hp_cop
self.results['HP Electricity Consumption (W)'] = hp_electricity
self.results['Boiler Heat Output (W)'] = q_boiler
self.results['Boiler Supply Temperature'] = t_sup_boiler
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
self.results['TES Layer 1 Temperature'] = t1
self.results['TES Layer 2 Temperature'] = t2
self.results['TES Layer 3 Temperature'] = t3
self.results['TES Layer 4 Temperature'] = t4
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
self.results['Heating Loop Return Temperature'] = t_ret
return hp_electricity, boiler_energy_consumption
def cooling_system_simulation(self):
hp = self.hvac_sizing()[0]
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
cooling_efficiency = float(hp.cooling_efficiency)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
t_ret[0] = 13
for i in range(1, len(demand)):
if demand[i] > 0.15 * self._cooling_peak_load:
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
if t_ret[i - 1] >= 13:
if demand[i] < 0.25 * self._cooling_peak_load:
q_hp[i] = 0.25 * hp.nominal_cooling_output
elif demand[i] < 0.5 * self._cooling_peak_load:
q_hp[i] = 0.5 * hp.nominal_cooling_output
else:
q_hp[i] = hp.nominal_cooling_output
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
if m[i] == 0:
t_ret[i] = t_sup_hp[i]
else:
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
m[i] = 0
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
t_ret[i] = t_ret[i - 1]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
eer_curve_coefficients[3] * t_out_fahrenheit +
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
hp_electricity[i] = q_hp[i] / cooling_efficiency
else:
hp_cop[i] = 0
hp_electricity[i] = 0
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
hp_hourly = []
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
if (i - 1) % number_of_ts == 0:
hp_hourly.append(hp_sum)
hp_sum = 0
hp.energy_consumption[cte.COOLING] = {}
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.COOLING][cte.HOUR])
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
self.results['Cooling Demand (W)'] = demand
self.results['HP Cooling Output (W)'] = q_hp
self.results['HP Cooling Supply Temperature'] = t_sup_hp
self.results['HP Cooling COP'] = hp_cop
self.results['HP Electricity Consumption'] = hp_electricity
self.results['Cooling Loop Flow Rate (kg/s)'] = m
self.results['Cooling Loop Return Temperature'] = t_ret
return hp_hourly
def dhw_system_simulation(self):
hp, tes = self.dhw_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
[variables[name] for name in variable_names]
t_tank[0] = 70
v_dhw[0] = tes.volume
hp_heating_cap = hp.nominal_heat_output
hp_delta_t = 8
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
freshwater_temperature = 18
for i in range(len(demand) - 1):
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if t_tank[i] < 62:
q_hp[i] = hp_heating_cap
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if demand[i] > 0:
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
m_refill[i] = m_dis[i]
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
if t_tank[i] < 60:
q_coil[i] = float(tes.heating_coil_capacity)
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if q_hp[i] > 0:
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
else:
m_ch[i] = 0
t_sup_hp[i] = t_tank[i]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_out[i] +
cop_curve_coefficients[2] * t_out[i] ** 2 +
cop_curve_coefficients[3] * t_tank[i] +
cop_curve_coefficients[4] * t_tank[i] ** 2 +
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
hp_electricity[i] = q_hp[i] / hp_cop[i]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
coil_hourly = []
coil_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
coil_sum = 0
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
tes.heating_coil_energy_consumption = {}
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.HOUR])
tes.heating_coil_energy_consumption[cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
tes.temperature = t_tank
self.results['DHW Demand (W)'] = demand
self.results['DHW HP Heat Output (W)'] = q_hp
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
self.results['DHW HP Source Temperature'] = t_out
self.results['DHW HP Supply Temperature'] = t_sup_hp
self.results['DHW HP COP'] = hp_cop
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
self.results['DHW TES Temperature'] = t_tank
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
self.results['DHW Flow Rate (kg/s)'] = m_dis
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
self.results['Available Water in Tank (m3)'] = v_dhw
return hp_hourly, coil_hourly
def enrich_buildings(self):
hp_heating, boiler_consumption = self.heating_system_simulation_stratified()
hp_cooling = self.cooling_system_simulation()
hp_dhw, heating_coil = self.dhw_system_simulation()
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
self._building.heating_consumption[cte.HOUR] = heating_consumption
self._building.heating_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
self._building.heating_consumption[cte.YEAR] = sum(self._building.heating_consumption[cte.MONTH])
self._building.cooling_consumption[cte.HOUR] = hp_cooling
self._building.cooling_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
self._building.cooling_consumption[cte.YEAR] = sum(self._building.cooling_consumption[cte.MONTH])
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
self._building.domestic_hot_water_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
self._building.domestic_hot_water_consumption[cte.YEAR] = (
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
file_name = f'energy_system_simulation_results_{self._name}.csv'
with open(self._output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(self.results.keys())
# Write data
output_file.writerows(zip(*self.results.values()))

View File

@ -1,398 +0,0 @@
import math
import hub.helpers.constants as cte
import csv
from hub.helpers.monthly_values import MonthlyValues
class Archetype14_15:
def __init__(self, building, output_path):
self._building = building
self._name = building.name
if 'PV' in building.energy_systems_archetype_name:
i = 1
self._pv_system = building.energy_systems[0]
else:
i = 0
self._dhw_system = building.energy_systems[i]
self._heating_system = building.energy_systems[i + 1]
self._cooling_system = building.energy_systems[i + 2]
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
cte.WATER_DENSITY)
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
building.domestic_hot_water_heat_demand[cte.HOUR]]
self._output_path = output_path
self._t_out = building.external_temperature[cte.HOUR]
self.results = {}
self.dt = 900
def heating_system_sizing(self):
storage_factor = 3
heat_pump = self._heating_system.generation_systems[1]
heat_pump.source_temperature = self._t_out
boiler = self._heating_system.generation_systems[0]
thermal_storage = boiler.energy_storage_systems[0]
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
thermal_storage.volume = round(
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
return heat_pump, boiler, thermal_storage
def cooling_system_sizing(self):
heat_pump = self._cooling_system.generation_systems[0]
heat_pump.nominal_cooling_output = heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
heat_pump.source_temperature = self._t_out
return heat_pump
def dhw_system_sizing(self):
storage_factor = 3
dhw_hp = self._dhw_system.generation_systems[0]
dhw_hp.nominal_heat_output = round(0.7 * self._domestic_hot_water_peak_load)
dhw_hp.source_temperature = self._t_out
dhw_tes = dhw_hp.energy_storage_systems[0]
dhw_tes.volume = round(
(self._domestic_hot_water_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
return dhw_hp, dhw_tes
def heating_system_simulation(self):
hp, boiler, tes = self.heating_system_sizing()
hp_efficiency = float(hp.heat_efficiency)
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
"heating_consumption"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
[variables[name] for name in variable_names]
t_tank[0] = 55
hp_heating_cap = hp.nominal_heat_output
boiler_heating_cap = boiler.nominal_heat_output
hp_delta_t = 5
boiler_efficiency = float(boiler.heat_efficiency)
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
# storage temperature prediction
for i in range(len(demand) - 1):
t_tank[i + 1] = (t_tank[i] +
(m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
# hp operation
if t_tank[i + 1] < 40:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
q_hp[i + 1] = 0
m_ch[i + 1] = 0
t_sup_hp[i + 1] = t_tank[i + 1]
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
q_hp[i + 1] = hp_heating_cap
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
else:
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
if q_hp[i + 1] > 0:
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_tank_fahrenheit +
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
cop_curve_coefficients[3] * t_out_fahrenheit +
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
else:
hp_cop[i + 1] = 0
hp_electricity[i + 1] = 0
# boiler operation
if q_hp[i + 1] > 0:
if t_sup_hp[i + 1] < 45:
q_boiler[i + 1] = boiler_heating_cap
elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
q_boiler[i + 1] = 0.5 * boiler_heating_cap
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
# storage discharging
if demand[i + 1] == 0:
m_dis[i + 1] = 0
t_ret[i + 1] = t_tank[i + 1]
else:
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
factor = 8
else:
factor = 4
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
hp_hourly = []
boiler_hourly = []
boiler_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
boiler_sum += boiler_consumption_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
boiler_hourly.append(boiler_sum)
hp_sum = 0
boiler_sum = 0
hp.energy_consumption[cte.HEATING] = {}
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.HEATING][cte.HOUR])
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
boiler.energy_consumption[cte.HEATING] = {}
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
boiler.energy_consumption[cte.HEATING][cte.HOUR])
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
self.results['Heating Demand (W)'] = demand
self.results['HP Heat Output (W)'] = q_hp
self.results['HP Source Temperature'] = t_out
self.results['HP Supply Temperature'] = t_sup_hp
self.results['HP COP'] = hp_cop
self.results['HP Electricity Consumption (W)'] = hp_electricity
self.results['Boiler Heat Output (W)'] = q_boiler
self.results['Boiler Supply Temperature'] = t_sup_boiler
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
self.results['TES Temperature'] = t_tank
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
self.results['Heating Loop Return Temperature'] = t_ret
return hp_hourly, boiler_hourly
def cooling_system_simulation(self):
hp = self.cooling_system_sizing()[0]
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
cooling_efficiency = float(hp.cooling_efficiency)
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
hp.source_temperature = self._t_out
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
t_ret[0] = 13
for i in range(1, len(demand)):
if demand[i] > 0.15 * self._cooling_peak_load:
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
if t_ret[i - 1] >= 13:
if demand[i] < 0.25 * self._cooling_peak_load:
q_hp[i] = 0.25 * hp.nominal_cooling_output
elif demand[i] < 0.5 * self._cooling_peak_load:
q_hp[i] = 0.5 * hp.nominal_cooling_output
else:
q_hp[i] = hp.nominal_cooling_output
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
if m[i] == 0:
t_ret[i] = t_sup_hp[i]
else:
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
else:
m[i] = 0
q_hp[i] = 0
t_sup_hp[i] = t_ret[i - 1]
t_ret[i] = t_ret[i - 1]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
eer_curve_coefficients[3] * t_out_fahrenheit +
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
hp_electricity[i] = q_hp[i] / cooling_efficiency
else:
hp_cop[i] = 0
hp_electricity[i] = 0
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
hp_hourly = []
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
if (i - 1) % number_of_ts == 0:
hp_hourly.append(hp_sum)
hp_sum = 0
hp.energy_consumption[cte.COOLING] = {}
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.COOLING][cte.HOUR])
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
self.results['Cooling Demand (W)'] = demand
self.results['HP Cooling Output (W)'] = q_hp
self.results['HP Cooling Supply Temperature'] = t_sup_hp
self.results['HP Cooling COP'] = hp_cop
self.results['HP Electricity Consumption'] = hp_electricity
self.results['Cooling Loop Flow Rate (kg/s)'] = m
self.results['Cooling Loop Return Temperature'] = t_ret
return hp_hourly
def dhw_system_simulation(self):
hp, tes = self.dhw_system_sizing()
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
num_hours = len(demand)
variables = {name: [0] * num_hours for name in variable_names}
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
[variables[name] for name in variable_names]
t_tank[0] = 70
v_dhw[0] = tes.volume
hp_heating_cap = hp.nominal_heat_output
hp_delta_t = 8
v, h = float(tes.volume), float(tes.height)
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
tes.layers)
u_tot = 1 / r_tot
d = math.sqrt((4 * v) / (math.pi * h))
a_side = math.pi * d * h
a_top = math.pi * d ** 2 / 4
ua = u_tot * (2 * a_top + a_side)
freshwater_temperature = 18
for i in range(len(demand) - 1):
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if t_tank[i] < 62:
q_hp[i] = hp_heating_cap
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if demand[i] > 0:
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
m_refill[i] = m_dis[i]
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
if t_tank[i] < 60:
q_coil[i] = float(tes.heating_coil_capacity)
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
if q_hp[i] > 0:
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
else:
m_ch[i] = 0
t_sup_hp[i] = t_tank[i]
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
t_out_fahrenheit = 1.8 * t_out[i] + 32
if q_hp[i] > 0:
hp_cop[i] = (cop_curve_coefficients[0] +
cop_curve_coefficients[1] * t_out[i] +
cop_curve_coefficients[2] * t_out[i] ** 2 +
cop_curve_coefficients[3] * t_tank[i] +
cop_curve_coefficients[4] * t_tank[i] ** 2 +
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
hp_electricity[i] = q_hp[i] / hp_cop[i]
else:
hp_cop[i] = 0
hp_electricity[i] = 0
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
tes.temperature = []
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
hp_hourly = []
coil_hourly = []
coil_sum = 0
hp_sum = 0
for i in range(1, len(demand)):
hp_sum += hp_electricity_j[i]
coil_sum += heating_coil_j[i]
if (i - 1) % number_of_ts == 0:
tes.temperature.append(t_tank[i])
hp_hourly.append(hp_sum)
coil_hourly.append(coil_sum)
hp_sum = 0
coil_sum = 0
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
tes.heating_coil_energy_consumption = {}
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
tes.heating_coil_energy_consumption[cte.HOUR])
tes.heating_coil_energy_consumption[cte.YEAR] = [
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
tes.temperature = t_tank
self.results['DHW Demand (W)'] = demand
self.results['DHW HP Heat Output (W)'] = q_hp
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
self.results['DHW HP Source Temperature'] = t_out
self.results['DHW HP Supply Temperature'] = t_sup_hp
self.results['DHW HP COP'] = hp_cop
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
self.results['DHW TES Temperature'] = t_tank
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
self.results['DHW Flow Rate (kg/s)'] = m_dis
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
self.results['Available Water in Tank (m3)'] = v_dhw
return hp_hourly, coil_hourly
def enrich_buildings(self):
hp_heating, boiler_consumption = self.heating_system_simulation()
hp_cooling = self.cooling_system_simulation()
hp_dhw, heating_coil = self.dhw_system_simulation()
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
self._building.heating_consumption[cte.HOUR] = heating_consumption
self._building.heating_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
self._building.cooling_consumption[cte.HOUR] = hp_cooling
self._building.cooling_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
self._building.domestic_hot_water_consumption[cte.MONTH] = (
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
self._building.domestic_hot_water_consumption[cte.YEAR] = (
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
file_name = f'energy_system_simulation_results_{self._name}.csv'
with open(self._output_path / file_name, 'w', newline='') as csvfile:
output_file = csv.writer(csvfile)
# Write header
output_file.writerow(self.results.keys())
# Write data
output_file.writerows(zip(*self.results.values()))

View File

@ -39,9 +39,9 @@ class TestSystemsCatalog(TestCase):
catalog_categories = catalog.names()
archetypes = catalog.names()
self.assertEqual(15, len(archetypes['archetypes']))
self.assertEqual(13, len(archetypes['archetypes']))
systems = catalog.names('systems')
self.assertEqual(12, len(systems['systems']))
self.assertEqual(17, len(systems['systems']))
generation_equipments = catalog.names('generation_equipments')
self.assertEqual(27, len(generation_equipments['generation_equipments']))
with self.assertRaises(ValueError):

View File

@ -114,7 +114,8 @@ class TestSystemsFactory(TestCase):
ResultFactory('insel_monthly_energy_balance', self._city, self._output_path).enrich()
for building in self._city.buildings:
building.energy_systems_archetype_name = 'PV+4Pipe+DHW'
building.energy_systems_archetype_name = ('Central 4 Pipes Air to Water Heat Pump and Gas Boiler with '
'Independent Water Heating and PV')
EnergySystemsFactory('montreal_future', self._city).enrich()
# Need to assign energy systems to buildings:
for building in self._city.buildings:
@ -131,5 +132,4 @@ class TestSystemsFactory(TestCase):
self.assertLess(0, building.heating_consumption[cte.YEAR][0])
self.assertLess(0, building.cooling_consumption[cte.YEAR][0])
self.assertLess(0, building.domestic_hot_water_consumption[cte.YEAR][0])
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])
print('test')
self.assertLess(0, building.onsite_electrical_production[cte.YEAR][0])