Compare commits

...

5 Commits

Author SHA1 Message Date
ae981362d8 feature: summer school analysis 2024-08-16 09:04:35 -04:00
Majid Rezaei
1999449738 feature: add converting to csv to simultaneity factor calculations 2024-08-16 09:04:15 -04:00
Majid Rezaei
7a1a3fbef1 feature: process road and building geojson files 2024-08-16 09:04:05 -04:00
Majid Rezaei
05b45328aa feature: add district heating network creator 2024-08-16 09:03:53 -04:00
Majid Rezaei
098c9aa338 feature: add simultinity factor calculations 2024-08-16 09:03:28 -04:00
15 changed files with 5515 additions and 1585026 deletions

View File

@ -0,0 +1,81 @@
{
"type": "FeatureCollection",
"name": "lachine_group_mach_buildings",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "id": 1 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665576136530092, 45.435517165119393 ], [ -73.665576136530092, 45.435901290585491 ], [ -73.665308918814546, 45.435901290585491 ], [ -73.665308918814546, 45.435517165119393 ], [ -73.665576136530092, 45.435517165119393 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 2 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665576136530092, 45.43643906623803 ], [ -73.665576136530092, 45.436936759233234 ], [ -73.665302238371666, 45.436936759233234 ], [ -73.665302238371666, 45.43643906623803 ], [ -73.665576136530092, 45.43643906623803 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 3 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665158608849552, 45.436672881739128 ], [ -73.665158608849552, 45.436839892811349 ], [ -73.664574070096791, 45.436839892811349 ], [ -73.664574070096791, 45.436672881739128 ], [ -73.665158608849552, 45.436672881739128 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 4 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664821246483683, 45.436512551109814 ], [ -73.664821246483683, 45.43657434520653 ], [ -73.664590771204018, 45.43657434520653 ], [ -73.664590771204018, 45.436512551109814 ], [ -73.664821246483683, 45.436512551109814 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 5 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664816236151509, 45.436448251847004 ], [ -73.664816236151509, 45.43650253044548 ], [ -73.664592441314738, 45.43650253044548 ], [ -73.664592441314738, 45.436448251847004 ], [ -73.664816236151509, 45.436448251847004 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 6 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664815401096149, 45.436378107196674 ], [ -73.664815401096149, 45.43643489096123 ], [ -73.664594111425458, 45.43643489096123 ], [ -73.664594111425458, 45.436378107196674 ], [ -73.664815401096149, 45.436378107196674 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 7 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664814566040789, 45.436312972878511 ], [ -73.664814566040789, 45.436370591698427 ], [ -73.664594111425458, 45.436370591698427 ], [ -73.664594111425458, 45.436312972878511 ], [ -73.664814566040789, 45.436312972878511 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 8 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664816236151509, 45.436248673615708 ], [ -73.664816236151509, 45.436299611992737 ], [ -73.664592441314738, 45.436299611992737 ], [ -73.664592441314738, 45.436248673615708 ], [ -73.664816236151509, 45.436248673615708 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 9 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664815401096149, 45.436177693910018 ], [ -73.664815401096149, 45.436235312729927 ], [ -73.664592441314738, 45.436235312729927 ], [ -73.664592441314738, 45.436177693910018 ], [ -73.664815401096149, 45.436177693910018 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 10 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664813730985429, 45.436109219370408 ], [ -73.664813730985429, 45.436169343356404 ], [ -73.664593276370098, 45.436169343356404 ], [ -73.664593276370098, 45.436109219370408 ], [ -73.664813730985429, 45.436109219370408 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 11 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665584487083734, 45.436100868816794 ], [ -73.665584487083734, 45.43628124077479 ], [ -73.664913102573422, 45.43628124077479 ], [ -73.664913102573422, 45.436100868816794 ], [ -73.665584487083734, 45.436100868816794 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 11 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66557947675156, 45.43537604076338 ], [ -73.66529722803952, 45.435372700541933 ], [ -73.665293887818066, 45.434841605332281 ], [ -73.665582816973, 45.434661233374285 ], [ -73.66557947675156, 45.43537604076338 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 12 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66516695940318, 45.435753485786591 ], [ -73.66516695940318, 45.435917156637359 ], [ -73.664530647218029, 45.435917156637359 ], [ -73.664530647218029, 45.435753485786591 ], [ -73.66516695940318, 45.435753485786591 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 13 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664857988919579, 45.435593155157257 ], [ -73.664587430982593, 45.435591485046537 ], [ -73.664589101093313, 45.435324267330991 ], [ -73.664857988919579, 45.435157256258769 ], [ -73.664857988919579, 45.435593155157257 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 14 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665409960513287, 45.434485871748457 ], [ -73.665227918444572, 45.434611130052616 ], [ -73.664611647588089, 45.434125127832466 ], [ -73.664788679324644, 45.434004879860467 ], [ -73.665409960513287, 45.434485871748457 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 15 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665122701469073, 45.434667913817172 ], [ -73.664730225449361, 45.434928451089831 ], [ -73.6645598741557, 45.434796512342778 ], [ -73.664954020286132, 45.434537645180839 ], [ -73.665122701469073, 45.434667913817172 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 16 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664749431722669, 45.434258736690239 ], [ -73.66469264795812, 45.434303829679735 ], [ -73.664553193712806, 45.434181911597015 ], [ -73.664611647588089, 45.43413598355216 ], [ -73.664749431722669, 45.434258736690239 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 17 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664679287072332, 45.434305499790462 ], [ -73.664619998141703, 45.434352262890677 ], [ -73.664486389283923, 45.434232014918685 ], [ -73.664543173048472, 45.434189427095269 ], [ -73.664679287072332, 45.434305499790462 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 18 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664606637255915, 45.434355603112124 ], [ -73.664547348325286, 45.434399025990899 ], [ -73.664409564190706, 45.434278778018907 ], [ -73.664464677844535, 45.434234520084765 ], [ -73.664606637255915, 45.434355603112124 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 19 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664533152384152, 45.434401531156986 ], [ -73.664478038730309, 45.434439943703595 ], [ -73.664334409208209, 45.434324706063762 ], [ -73.664396203304932, 45.434279613074267 ], [ -73.664533152384152, 45.434401531156986 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 20 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664464677844535, 45.434442448869675 ], [ -73.664405388913892, 45.434486706803817 ], [ -73.664265099613232, 45.434367293887178 ], [ -73.664323553488515, 45.434325541119122 ], [ -73.664464677844535, 45.434442448869675 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 21 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664389522862038, 45.434490047025257 ], [ -73.664336914374289, 45.434531799793312 ], [ -73.664187439464655, 45.4344140569874 ], [ -73.664248398506018, 45.434373139274705 ], [ -73.664389522862038, 45.434490047025257 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 21 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664316873045621, 45.434532634848672 ], [ -73.664264264557872, 45.434576057727455 ], [ -73.664121470091132, 45.434464160309062 ], [ -73.664179088911041, 45.434421572485647 ], [ -73.664316873045621, 45.434532634848672 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 22 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664525636885912, 45.435077090944098 ], [ -73.663657179310391, 45.435634907925305 ], [ -73.663523570452611, 45.435528020839087 ], [ -73.664385347585252, 45.434956842972106 ], [ -73.664525636885912, 45.435077090944098 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 23 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664248398506032, 45.434890038543216 ], [ -73.664098088541039, 45.434996925629434 ], [ -73.663747365289382, 45.434729707913888 ], [ -73.663901015475815, 45.434632841492004 ], [ -73.664248398506032, 45.434890038543216 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 24 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663470126909502, 45.4355213403962 ], [ -73.663293095172946, 45.435621547039531 ], [ -73.662895608821074, 45.435224060687652 ], [ -73.663089341664843, 45.435087111608432 ], [ -73.663470126909502, 45.4355213403962 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 26 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663733169348234, 45.434914463912534 ], [ -73.663676385583685, 45.43495705173595 ], [ -73.663538601449105, 45.434849329594364 ], [ -73.663588704770774, 45.434804236604869 ], [ -73.663733169348234, 45.434914463912534 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 27 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663665529863991, 45.43495872184667 ], [ -73.663602900711908, 45.435004649891532 ], [ -73.663461776355874, 45.434891082362419 ], [ -73.663518560120437, 45.434848494539004 ], [ -73.663665529863991, 45.43495872184667 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 28 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663592880047574, 45.435007990112979 ], [ -73.663534426172291, 45.435049742881034 ], [ -73.663395806982351, 45.434937845462642 ], [ -73.66345008558082, 45.434896092694586 ], [ -73.663592880047574, 45.435007990112979 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 29 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663516890009717, 45.435051412991754 ], [ -73.663464281521968, 45.43509233070445 ], [ -73.663316476723054, 45.434978763175337 ], [ -73.663381611041217, 45.434937010407282 ], [ -73.663516890009717, 45.435051412991754 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 30 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66344758041474, 45.43509483587053 ], [ -73.663389126539457, 45.435138258749312 ], [ -73.663248002183437, 45.43502302110948 ], [ -73.66330645605872, 45.434979598230697 ], [ -73.66344758041474, 45.43509483587053 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 31 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663374930598323, 45.435141598970752 ], [ -73.663317311778414, 45.435184186794174 ], [ -73.6631736822563, 45.435074794541869 ], [ -73.663237146463743, 45.435028866497007 ], [ -73.663374930598323, 45.435141598970752 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 33 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663299775615826, 45.435188362070974 ], [ -73.663253012515597, 45.435225939562223 ], [ -73.66312775421143, 45.435100681258064 ], [ -73.663164496647326, 45.435074794541869 ], [ -73.663299775615826, 45.435188362070974 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 34 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664583255705864, 45.433868139545069 ], [ -73.664172408468204, 45.434123666485561 ], [ -73.664018758281756, 45.433881500430843 ], [ -73.664464677844592, 45.433757912237397 ], [ -73.664583255705864, 45.433868139545069 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 36 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663997046842368, 45.434095274603287 ], [ -73.663908530974098, 45.434299028111397 ], [ -73.663263868235319, 45.4338180362234 ], [ -73.663449250525488, 45.433677746922733 ], [ -73.663997046842368, 45.434095274603287 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 37 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.6637064475767, 45.434445997854951 ], [ -73.663504364179317, 45.43456624582695 ], [ -73.662851350886925, 45.434083583828233 ], [ -73.663046753841428, 45.433941624416846 ], [ -73.6637064475767, 45.434445997854951 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 38 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662968258637491, 45.434270636229108 ], [ -73.662757824686494, 45.434439317412057 ], [ -73.662552401067657, 45.434307378664997 ], [ -73.662782876347322, 45.434150388257109 ], [ -73.662968258637491, 45.434270636229108 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 39 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66293652653377, 45.434915298967887 ], [ -73.662712731696985, 45.435022186054105 ], [ -73.662311905123659, 45.434559565384056 ], [ -73.662473905863706, 45.434394224422554 ], [ -73.66293652653377, 45.434915298967887 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 40 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663361569712563, 45.434631380145106 ], [ -73.663303950892654, 45.434673132913161 ], [ -73.66315948631518, 45.434562070550136 ], [ -73.66321543502437, 45.434516142505274 ], [ -73.663361569712563, 45.434631380145106 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 41 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663290590006866, 45.434677308189968 ], [ -73.663232136131597, 45.434720731068744 ], [ -73.663091846830923, 45.434609668705718 ], [ -73.663146125429407, 45.434566245826943 ], [ -73.663290590006866, 45.434677308189968 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 42 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663216270079729, 45.434723236234831 ], [ -73.66316449664734, 45.434764153947526 ], [ -73.663019197014521, 45.434652256529134 ], [ -73.66307514572371, 45.434610503761078 ], [ -73.663216270079729, 45.434723236234831 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 43 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663141115097233, 45.434767494168966 ], [ -73.663085166388043, 45.434810917047749 ], [ -73.662943206976649, 45.434697349518636 ], [ -73.662999155685853, 45.434655596750581 ], [ -73.663141115097233, 45.434767494168966 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 44 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663070135391536, 45.434816762435275 ], [ -73.663019197014521, 45.434858515203331 ], [ -73.662871392215592, 45.434744947674218 ], [ -73.662927340924796, 45.434701524795443 ], [ -73.663070135391536, 45.434816762435275 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 45 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662996650519759, 45.434860185314051 ], [ -73.662951557530263, 45.434894422583859 ], [ -73.662833814724351, 45.434779184944027 ], [ -73.662863041661993, 45.434745782729578 ], [ -73.662996650519759, 45.434860185314051 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 46 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.663172847200954, 45.435882293076048 ], [ -73.662980784467905, 45.435974149165773 ], [ -73.662469730586906, 45.435426352848886 ], [ -73.662670143873569, 45.435326146205554 ], [ -73.663172847200954, 45.435882293076048 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 47 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662810433174229, 45.43604596392683 ], [ -73.662235915085787, 45.436202954334718 ], [ -73.662090615452954, 45.436059324812604 ], [ -73.662660123209236, 45.435883963186775 ], [ -73.662810433174229, 45.43604596392683 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 49 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662297709182511, 45.435972479055053 ], [ -73.662105646449461, 45.436029262819609 ], [ -73.661788325412232, 45.435740333664661 ], [ -73.661988738698909, 45.435651817796384 ], [ -73.662297709182511, 45.435972479055053 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 50 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662593318780353, 45.435580838090694 ], [ -73.662531524683629, 45.435615075360495 ], [ -73.662412946822357, 45.435490652111696 ], [ -73.6624805863066, 45.435453909675807 ], [ -73.662593318780353, 45.435580838090694 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 51 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662513153465682, 45.435615910415862 ], [ -73.662448854202879, 45.435650982741024 ], [ -73.66233946195058, 45.435532404879751 ], [ -73.662402091102663, 45.435497332554583 ], [ -73.662513153465682, 45.435615910415862 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 52 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662432988151025, 45.435650982741024 ], [ -73.662369523943582, 45.435684384955472 ], [ -73.662258461580549, 45.435568312260273 ], [ -73.662323595898712, 45.435533239935111 ], [ -73.662432988151025, 45.435650982741024 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 53 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662352822836354, 45.435686890121552 ], [ -73.662289358628911, 45.435719457280634 ], [ -73.662175791099799, 45.435603384585441 ], [ -73.662237585196522, 45.43556914731564 ], [ -73.662352822836354, 45.435686890121552 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 55 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66194114054332, 45.436273098985055 ], [ -73.661677263049199, 45.436343243635385 ], [ -73.661206291825536, 45.435825509311499 ], [ -73.661329880018982, 45.435608394917615 ], [ -73.66194114054332, 45.436273098985055 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 56 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66139668444788, 45.436279779427942 ], [ -73.660862249016759, 45.43652027537194 ], [ -73.660715279273205, 45.436369965406946 ], [ -73.661122786289425, 45.435985839940834 ], [ -73.66139668444788, 45.436279779427942 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 57 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.662522339074641, 45.435170825908394 ], [ -73.662298544237871, 45.435284393437506 ], [ -73.661954501429094, 45.43490360819284 ], [ -73.662118172279875, 45.434716555791951 ], [ -73.662522339074641, 45.435170825908394 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 58 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.661974542757761, 45.435144104136839 ], [ -73.661837593678541, 45.435317795651947 ], [ -73.661937800321866, 45.435448064288281 ], [ -73.661633840170424, 45.435578332924614 ], [ -73.661476849762536, 45.435397960966611 ], [ -73.661857635007209, 45.434987113728951 ], [ -73.661974542757761, 45.435144104136839 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 59 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.661874336114423, 45.434512802283841 ], [ -73.661557015077207, 45.434873546199839 ], [ -73.661276436475873, 45.434596307819952 ], [ -73.661730706592309, 45.434339110768732 ], [ -73.661874336114423, 45.434512802283841 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 60 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.661430086662321, 45.434997134393285 ], [ -73.661279776697313, 45.435174166129841 ], [ -73.660915692559868, 45.434796721106615 ], [ -73.661126126510879, 45.434666452470282 ], [ -73.661430086662321, 45.434997134393285 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 61 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.661116105846546, 45.435397960966611 ], [ -73.660999198095979, 45.435591693810395 ], [ -73.660474783329207, 45.435050577936394 ], [ -73.660688557501658, 45.434916969078614 ], [ -73.661116105846546, 45.435397960966611 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 62 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.660895651231215, 45.435731983111054 ], [ -73.660367896242988, 45.435969138833613 ], [ -73.660204225392206, 45.435808808204278 ], [ -73.660765382594874, 45.435554951374499 ], [ -73.660895651231215, 45.435731983111054 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 63 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.660384597350216, 45.435625096024836 ], [ -73.660144101406217, 45.435728642889615 ], [ -73.65980673904032, 45.435357878309283 ], [ -73.660060595870107, 45.435240970558723 ], [ -73.660384597350216, 45.435625096024836 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 64 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.664149026918068, 45.43368108714418 ], [ -73.664008737617408, 45.433764592680291 ], [ -73.663905190752629, 45.433641004486844 ], [ -73.664022098503182, 45.433567519615067 ], [ -73.664149026918068, 45.43368108714418 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 65 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665702229889732, 45.434185460582285 ], [ -73.665541899260404, 45.434289007447063 ], [ -73.66499076272207, 45.433878160209403 ], [ -73.665151093351398, 45.433767932901738 ], [ -73.665702229889732, 45.434185460582285 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 67 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666320170856977, 45.433948304859719 ], [ -73.666116417348874, 45.434091934381826 ], [ -73.665458393724322, 45.433600921829495 ], [ -73.665672167896759, 45.433420549871499 ], [ -73.666320170856977, 45.433948304859719 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 68 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.667141865332312, 45.433403848764272 ], [ -73.666363593735753, 45.433928263531051 ], [ -73.666186561999197, 45.433787974230384 ], [ -73.666948132488528, 45.433276920349385 ], [ -73.667141865332312, 45.433403848764272 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 69 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666854606288084, 45.43323349747061 ], [ -73.666650852779981, 45.433380467214164 ], [ -73.666386975285874, 45.433193414813275 ], [ -73.666667553887208, 45.43309654839139 ], [ -73.666854606288084, 45.43323349747061 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 70 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666557326579536, 45.433019723298166 ], [ -73.666103056463101, 45.433126610384384 ], [ -73.666062973805765, 45.433086527727056 ], [ -73.66488387563588, 45.433373786771277 ], [ -73.664810390764103, 45.433223476806276 ], [ -73.66597278782676, 45.432929537319168 ], [ -73.665889282290649, 45.432729124032498 ], [ -73.666066314027205, 45.432672340267942 ], [ -73.666557326579536, 45.433019723298166 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 71 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666499707759627, 45.433347900055082 ], [ -73.666428728053944, 45.43336627127303 ], [ -73.666371944289381, 45.433208445809782 ], [ -73.666382800009075, 45.433205940643695 ], [ -73.666499707759627, 45.433347900055082 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 72 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.66641870738961, 45.43336710632839 ], [ -73.666365263846487, 45.433379632158804 ], [ -73.666308480081938, 45.433234332525977 ], [ -73.666358583403607, 45.433215961308029 ], [ -73.66641870738961, 45.43336710632839 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 73 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666347727683913, 45.433381302269531 ], [ -73.66628676864255, 45.433395498210665 ], [ -73.666231654988721, 45.433251868688558 ], [ -73.66628342842111, 45.43322932219381 ], [ -73.666347727683913, 45.433381302269531 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 74 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666273407756776, 45.433394663155305 ], [ -73.666216623992213, 45.433409694151806 ], [ -73.666164850559824, 45.433286105958359 ], [ -73.666220799269027, 45.433265229574332 ], [ -73.666273407756776, 45.433394663155305 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 75 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666198252774265, 45.433413034373253 ], [ -73.666139798898996, 45.433431405591193 ], [ -73.666081345023713, 45.433293621456613 ], [ -73.666144809231156, 45.433272745072586 ], [ -73.666198252774265, 45.433413034373253 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 77 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666128108123942, 45.43343307570192 ], [ -73.666069654248659, 45.433449776809141 ], [ -73.66601454059483, 45.433305312231667 ], [ -73.666063808861139, 45.433289446179806 ], [ -73.666128108123942, 45.43343307570192 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 78 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.666054623252165, 45.433449776809141 ], [ -73.665997839487602, 45.433469818137809 ], [ -73.665944395944493, 45.433337879390749 ], [ -73.666004519930496, 45.433312827729921 ], [ -73.666054623252165, 45.433449776809141 ] ] ] ] } },
{ "type": "Feature", "properties": { "id": 79 }, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -73.665984478601828, 45.433469818137809 ], [ -73.665933540224799, 45.433484014078942 ], [ -73.665870911072716, 45.433348735110442 ], [ -73.665926024726545, 45.433331198947862 ], [ -73.665984478601828, 45.433469818137809 ] ] ] ] } }
]
}

12
input_files/new.geojson Normal file

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1 @@
{"type": "FeatureCollection", "features": []}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,628 @@
{
"type": "FeatureCollection",
"name": "lachine_roadfs",
"crs": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:OGC:1.3:CRS84"
}
},
"features": [
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66582797080785,
45.43501726460131
],
[
-73.66582043211604,
45.436102836222425
],
[
-73.66582043211604,
45.436102836222425
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66582043211604,
45.436102836222425
],
[
-73.66582043211604,
45.437203485227165
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66582043211604,
45.437203485227165
],
[
-73.66583550949966,
45.43833428899916
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66583550949966,
45.43833428899916
],
[
-73.66679292335995,
45.43815336039564
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66679292335995,
45.43815336039564
],
[
-73.66676276859269,
45.437226101302606
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66676276859269,
45.437226101302606
],
[
-73.66582043211604,
45.437203485227165
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66676276859269,
45.437226101302606
],
[
-73.66677030728451,
45.43677377979381
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66677030728451,
45.43677377979381
],
[
-73.66753925384947,
45.43675116371837
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66753925384947,
45.43675116371837
],
[
-73.66756186992491,
45.436102836222425
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66756186992491,
45.436102836222425
],
[
-73.66582043211604,
45.436102836222425
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66756186992491,
45.436102836222425
],
[
-73.66754679254127,
45.435032341984936
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66754679254127,
45.435032341984936
],
[
-73.66582797080785,
45.43501726460131
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66754679254127,
45.435032341984936
],
[
-73.66858713201151,
45.435024803293125
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66858713201151,
45.435024803293125
],
[
-73.6694314654946,
45.435039880676754
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66858713201151,
45.435024803293125
],
[
-73.66860974808695,
45.436087758838795
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66860974808695,
45.436087758838795
],
[
-73.66862482547057,
45.43723363999442
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66862482547057,
45.43723363999442
],
[
-73.66944654287822,
45.43723363999442
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66944654287822,
45.43723363999442
],
[
-73.66943900418642,
45.43609529753061
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66943900418642,
45.43609529753061
],
[
-73.66860974808695,
45.436087758838795
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66943900418642,
45.43609529753061
],
[
-73.6694314654946,
45.435039880676754
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66862482547057,
45.43723363999442
],
[
-73.66770510506936,
45.437226101302606
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66770510506936,
45.437226101302606
],
[
-73.66676276859269,
45.437226101302606
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66770510506936,
45.437226101302606
],
[
-73.66771264376118,
45.43797243179212
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66771264376118,
45.43797243179212
],
[
-73.66679292335995,
45.43815336039564
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66771264376118,
45.43797243179212
],
[
-73.66863990285421,
45.4377915031886
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66863990285421,
45.4377915031886
],
[
-73.66862482547057,
45.43723363999442
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66863990285421,
45.4377915031886
],
[
-73.66945408157004,
45.43764826804415
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66945408157004,
45.43764826804415
],
[
-73.66944654287822,
45.43723363999442
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6694314654946,
45.435039880676754
],
[
-73.66938623334372,
45.433622606615856
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66938623334372,
45.433622606615856
],
[
-73.66870021238871,
45.43365276138311
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66870021238871,
45.43365276138311
],
[
-73.66868513500509,
45.43390907690476
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66868513500509,
45.43390907690476
],
[
-73.66870021238871,
45.43406738943284
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66868513500509,
45.43390907690476
],
[
-73.66839112602436,
45.43389399952113
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66870021238871,
45.43406738943284
],
[
-73.6681272718109,
45.43442924663987
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66870021238871,
45.43365276138311
],
[
-73.6676749503021,
45.43365276138311
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66938623334372,
45.433622606615856
],
[
-73.66930330773377,
45.43118007046835
]
]
},
"properties": {}
}
]
}

43
input_files/roads.geojson Normal file
View File

@ -0,0 +1,43 @@
{
"type": "FeatureCollection",
"name": "roads",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "id": 1 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.665827970807854, 45.435017264601314 ], [ -73.665820432116035, 45.436102836222425 ], [ -73.665820432116035, 45.436102836222425 ] ] ] } },
{ "type": "Feature", "properties": { "id": 2 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.665820432116035, 45.436102836222425 ], [ -73.665820432116035, 45.437203485227165 ] ] ] } },
{ "type": "Feature", "properties": { "id": 3 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.665820432116035, 45.437203485227165 ], [ -73.665835509499658, 45.438334288999158 ] ] ] } },
{ "type": "Feature", "properties": { "id": 4 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.665835509499658, 45.438334288999158 ], [ -73.666792923359949, 45.438153360395638 ] ] ] } },
{ "type": "Feature", "properties": { "id": 5 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.666792923359949, 45.438153360395638 ], [ -73.66676276859269, 45.437226101302606 ] ] ] } },
{ "type": "Feature", "properties": { "id": 6 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66676276859269, 45.437226101302606 ], [ -73.665820432116035, 45.437203485227165 ] ] ] } },
{ "type": "Feature", "properties": { "id": 7 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66676276859269, 45.437226101302606 ], [ -73.666770307284509, 45.43677377979381 ] ] ] } },
{ "type": "Feature", "properties": { "id": 8 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.666770307284509, 45.43677377979381 ], [ -73.667539253849469, 45.43675116371837 ] ] ] } },
{ "type": "Feature", "properties": { "id": 8 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667539253849469, 45.43675116371837 ], [ -73.66756186992491, 45.436102836222425 ] ] ] } },
{ "type": "Feature", "properties": { "id": 9 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66756186992491, 45.436102836222425 ], [ -73.665820432116035, 45.436102836222425 ] ] ] } },
{ "type": "Feature", "properties": { "id": 10 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66756186992491, 45.436102836222425 ], [ -73.667546792541273, 45.435032341984936 ] ] ] } },
{ "type": "Feature", "properties": { "id": 11 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667546792541273, 45.435032341984936 ], [ -73.665827970807854, 45.435017264601314 ] ] ] } },
{ "type": "Feature", "properties": { "id": 12 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667546792541273, 45.435032341984936 ], [ -73.66858713201151, 45.435024803293125 ] ] ] } },
{ "type": "Feature", "properties": { "id": 13 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66858713201151, 45.435024803293125 ], [ -73.669431465494597, 45.435039880676754 ] ] ] } },
{ "type": "Feature", "properties": { "id": 14 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66858713201151, 45.435024803293125 ], [ -73.668609748086951, 45.436087758838795 ] ] ] } },
{ "type": "Feature", "properties": { "id": 15 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668609748086951, 45.436087758838795 ], [ -73.668624825470573, 45.437233639994417 ] ] ] } },
{ "type": "Feature", "properties": { "id": 17 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668624825470573, 45.437233639994417 ], [ -73.669446542878219, 45.437233639994417 ] ] ] } },
{ "type": "Feature", "properties": { "id": 18 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669446542878219, 45.437233639994417 ], [ -73.669439004186415, 45.436095297530613 ] ] ] } },
{ "type": "Feature", "properties": { "id": 19 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669439004186415, 45.436095297530613 ], [ -73.668609748086951, 45.436087758838795 ] ] ] } },
{ "type": "Feature", "properties": { "id": 20 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669439004186415, 45.436095297530613 ], [ -73.669431465494597, 45.435039880676754 ] ] ] } },
{ "type": "Feature", "properties": { "id": 21 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668624825470573, 45.437233639994417 ], [ -73.667705105069359, 45.437226101302606 ] ] ] } },
{ "type": "Feature", "properties": { "id": 22 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667705105069359, 45.437226101302606 ], [ -73.66676276859269, 45.437226101302606 ] ] ] } },
{ "type": "Feature", "properties": { "id": 23 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667705105069359, 45.437226101302606 ], [ -73.667712643761178, 45.437972431792119 ] ] ] } },
{ "type": "Feature", "properties": { "id": 24 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667712643761178, 45.437972431792119 ], [ -73.666792923359949, 45.438153360395638 ] ] ] } },
{ "type": "Feature", "properties": { "id": 24 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.667712643761178, 45.437972431792119 ], [ -73.66863990285421, 45.437791503188599 ] ] ] } },
{ "type": "Feature", "properties": { "id": 26 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66863990285421, 45.437791503188599 ], [ -73.668624825470573, 45.437233639994417 ] ] ] } },
{ "type": "Feature", "properties": { "id": 27 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.66863990285421, 45.437791503188599 ], [ -73.669454081570038, 45.43764826804415 ] ] ] } },
{ "type": "Feature", "properties": { "id": 28 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669454081570038, 45.43764826804415 ], [ -73.669446542878219, 45.437233639994417 ] ] ] } },
{ "type": "Feature", "properties": { "id": 29 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669431465494597, 45.435039880676754 ], [ -73.669386233343715, 45.433622606615856 ] ] ] } },
{ "type": "Feature", "properties": { "id": 30 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669386233343715, 45.433622606615856 ], [ -73.668700212388714, 45.433652761383108 ] ] ] } },
{ "type": "Feature", "properties": { "id": 31 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668700212388714, 45.433652761383108 ], [ -73.668685135005092, 45.433909076904762 ] ] ] } },
{ "type": "Feature", "properties": { "id": 32 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668685135005092, 45.433909076904762 ], [ -73.668700212388714, 45.43406738943284 ] ] ] } },
{ "type": "Feature", "properties": { "id": 33 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668685135005092, 45.433909076904762 ], [ -73.66839112602436, 45.433893999521132 ] ] ] } },
{ "type": "Feature", "properties": { "id": 34 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668700212388714, 45.43406738943284 ], [ -73.668127271810903, 45.434429246639873 ] ] ] } },
{ "type": "Feature", "properties": { "id": 35 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.668700212388714, 45.433652761383108 ], [ -73.6676749503021, 45.433652761383108 ] ] ] } },
{ "type": "Feature", "properties": { "id": 35 }, "geometry": { "type": "MultiLineString", "coordinates": [ [ [ -73.669386233343715, 45.433622606615856 ], [ -73.66930330773377, 45.431180070468351 ] ] ] } }
]
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,900 @@
{
"type": "FeatureCollection",
"name": "lachine_roadfs",
"crs": {
"type": "name",
"properties": {
"name": "urn:ogc:def:crs:OGC:1.3:CRS84"
}
},
"features": [
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65594139216809,
45.43892504130949
],
[
-73.65715220401293,
45.43822016359244
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65799428420533,
45.43987516845119
],
[
-73.65715220401293,
45.43822016359244
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65715220401293,
45.43822016359244
],
[
-73.6580217247004,
45.43767649878391
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6580217247004,
45.43767649878391
],
[
-73.65945549056768,
45.436925315231434
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65945549056768,
45.436925315231434
],
[
-73.65973332558023,
45.437405523895116
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65973332558023,
45.437405523895116
],
[
-73.6597607660753,
45.43955617269603
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65945549056768,
45.436925315231434
],
[
-73.66077606439278,
45.43661832469285
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66077606439278,
45.43661832469285
],
[
-73.66216180939368,
45.43631476421617
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66216180939368,
45.43631476421617
],
[
-73.66223898578612,
45.43707109286148
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66223898578612,
45.43707109286148
],
[
-73.66113450585965,
45.437331777564616
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66113450585965,
45.437331777564616
],
[
-73.6611486548649,
45.438600578893194
],
[
-73.66115508623095,
45.43917029073414
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66223898578612,
45.43707109286148
],
[
-73.66229386677625,
45.43858718021396
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66229386677625,
45.43858718021396
],
[
-73.6611486548649,
45.438600578893194
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66216180939368,
45.43631476421617
],
[
-73.66160281649616,
45.435697031508866
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66160281649616,
45.435697031508866
],
[
-73.66132155142171,
45.43540890631066
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66132155142171,
45.43540890631066
],
[
-73.66073158077776,
45.43475033442904
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66216180939368,
45.43631476421617
],
[
-73.66346191003697,
45.43590969534564
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66346191003697,
45.43590969534564
],
[
-73.66272101667016,
45.435203102597654
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66272101667016,
45.435203102597654
],
[
-73.66160281649616,
45.435697031508866
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66272101667016,
45.435203102597654
],
[
-73.66211732577867,
45.43452395034473
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66211732577867,
45.43452395034473
],
[
-73.66132155142171,
45.43540890631066
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66211732577867,
45.43452395034473
],
[
-73.66177431959032,
45.43418780428016
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66177431959032,
45.43418780428016
],
[
-73.66073158077776,
45.43475033442904
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66077606439278,
45.43661832469285
],
[
-73.66053949731229,
45.436314442647884
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66053949731229,
45.436314442647884
],
[
-73.66132155142171,
45.43540890631066
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66053949731229,
45.436314442647884
],
[
-73.65957907998492,
45.435306004454155
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.65957907998492,
45.435306004454155
],
[
-73.66073158077776,
45.43475033442904
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66346191003697,
45.43590969534564
],
[
-73.66442232736433,
45.435326584825454
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66442232736433,
45.435326584825454
],
[
-73.66471731268632,
45.43508648049362
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66471731268632,
45.43508648049362
],
[
-73.66579435211771,
45.43442104848823
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66272101667016,
45.435203102597654
],
[
-73.66391467820559,
45.43443476873576
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66391467820559,
45.43443476873576
],
[
-73.66471731268632,
45.43508648049362
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66442232736433,
45.435326584825454
],
[
-73.66444976785941,
45.43599887695461
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66444976785941,
45.43599887695461
],
[
-73.66444976785941,
45.43695929428197
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66444976785941,
45.43695929428197
],
[
-73.66575319137512,
45.437000455024574
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66444976785941,
45.43599887695461
],
[
-73.66576691162264,
45.436005737078375
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66391467820559,
45.43443476873576
],
[
-73.66305030261097,
45.43377619685415
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66305030261097,
45.43377619685415
],
[
-73.66211732577867,
45.43452395034473
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66391467820559,
45.43443476873576
],
[
-73.6651357802361,
45.43365271462634
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6651357802361,
45.43365271462634
],
[
-73.66387351746299,
45.43332342868553
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66387351746299,
45.43332342868553
],
[
-73.66305030261097,
45.43377619685415
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6651357802361,
45.43365271462634
],
[
-73.66565714964237,
45.43398886069092
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66565714964237,
45.43398886069092
],
[
-73.66579435211771,
45.43442104848823
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66579435211771,
45.43442104848823
],
[
-73.66576691162264,
45.436005737078375
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66576691162264,
45.436005737078375
],
[
-73.66575319137512,
45.437000455024574
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66387351746299,
45.43332342868553
],
[
-73.66611677793476,
45.43254823469987
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66611677793476,
45.43254823469987
],
[
-73.66736532046032,
45.43350179190347
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.66736532046032,
45.43350179190347
],
[
-73.66579435211771,
45.43442104848823
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6651357802361,
45.43365271462634
],
[
-73.6657120306325,
45.43328226794293
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6657120306325,
45.43328226794293
],
[
-73.6667307590119,
45.43303530348731
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6667307590119,
45.43303530348731
],
[
-73.66611677793476,
45.43254823469987
]
]
},
"properties": {}
},
{
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": [
[
-73.6667307590119,
45.43303530348731
],
[
-73.66736532046032,
45.43350179190347
]
]
},
"properties": {}
}
]
}

15
main.py
View File

@ -7,18 +7,9 @@ from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
from hub.imports.results_factory import ResultFactory
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
from scripts.geojson_creator import process_geojson
from scripts import random_assignation
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing import SystemSizing
from scripts.solar_angles import CitySolarAngles
from scripts.pv_sizing_and_simulation import PVSizingSimulation
from scripts.energy_system_retrofit_results import consumption_data, cost_data
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.costs.cost import Cost
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
from scripts.district_heating_network.road_processor import road_processor
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
from scripts.district_heating_network.geojson_graph_creator import networkx_to_geojson
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_feasibility import pv_feasibility

View File

@ -0,0 +1,61 @@
import json
import random
def right_hand_rule(polygon):
"""
Ensure coordinates follow the right-hand rule for polygons.
The right-hand rule implies that the vertices of the exterior ring of the polygon are ordered counterclockwise.
"""
def is_clockwise(coords):
total = 0
for i in range(len(coords)):
x1, y1 = coords[i]
x2, y2 = coords[(i + 1) % len(coords)]
total += (x2 - x1) * (y2 + y1)
return total > 0
for coords in polygon:
if is_clockwise(coords):
coords.reverse()
def process_geojson(geojson):
for i, feature in enumerate(geojson['features']):
# Check and correct the coordinate order
if feature['geometry']['type'] == "MultiPolygon":
for polygon in feature['geometry']['coordinates']:
right_hand_rule(polygon)
# Change geometry type to Polygon
feature['geometry']['type'] = "Polygon"
feature['geometry']['coordinates'] = feature['geometry']['coordinates'][0]
# Remove 'id' attribute from properties
if 'id' in feature['properties']:
del feature['properties']['id']
# Add new properties
feature['id'] = i + 1
feature['properties'].update({
"name": str(i + 1),
"address": "",
"function": random.choice([1000, 6199]),
"height": round(random.uniform(13, 30), 2),
"year_of_construction": 2023
})
# Load the GeoJSON file
with open('../../input_files/lachine_group_mach_buildings.geojson', 'r') as file:
geojson = json.load(file)
# Process the GeoJSON data
process_geojson(geojson)
# Save the processed GeoJSON to a new file
with open('processed_output.geojson', 'w') as file:
json.dump(geojson, file, indent=4)
print("GeoJSON processing complete.")

View File

@ -0,0 +1,54 @@
import json
from shapely import LineString, Point
import networkx as nx
from pathlib import Path
def networkx_to_geojson(graph: nx.Graph) -> Path:
"""
Convert a NetworkX graph to GeoJSON format.
:param graph: A NetworkX graph.
:return: GeoJSON formatted dictionary.
"""
features = []
for u, v, data in graph.edges(data=True):
line = LineString([u, v])
feature = {
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": list(line.coords)
},
"properties": {
"weight": data.get("weight", 1.0)
}
}
features.append(feature)
for node, data in graph.nodes(data=True):
point = Point(node)
feature = {
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": list(point.coords)[0]
},
"properties": {
"type": data.get("type", "unknown"),
"id": data.get("id", "N/A")
}
}
features.append(feature)
geojson = {
"type": "FeatureCollection",
"features": features
}
output_geojson_file = Path('./out_files/network_graph.geojson').resolve()
with open(output_geojson_file, 'w') as file:
json.dump(geojson, file, indent=4)
return output_geojson_file

View File

@ -0,0 +1,48 @@
import json
import random
# Function to process the GeoJSON for roads
def process_roads_geojson(geojson):
# Create the new structure
new_geojson = {
"type": "FeatureCollection",
"name": "lachine_roadfs",
"crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:OGC:1.3:CRS84"}},
"features": []
}
for i, feature in enumerate(geojson['features']):
# Convert MultiLineString to LineString if necessary
coordinates = feature['geometry']['coordinates']
if feature['geometry']['type'] == "MultiLineString":
coordinates = coordinates[0]
# Add the new properties
new_feature = {
"type": "Feature",
"geometry": {
"type": "LineString",
"coordinates": coordinates
},
"properties": {
}
}
new_geojson['features'].append(new_feature)
return new_geojson
# Load the original GeoJSON file
with open('../../input_files/roads.geojson', 'r') as file:
original_geojson = json.load(file)
# Process the GeoJSON data
processed_geojson = process_roads_geojson(original_geojson)
# Save the processed GeoJSON to a new file
with open('../../input_files/processed_roads_output.geojson', 'w') as file:
json.dump(processed_geojson, file, indent=4)
print("GeoJSON roads processing complete.")

View File

@ -25,7 +25,7 @@ def road_processor(x, y, diff):
])
# Define input and output file paths
geojson_file = Path("./input_files/roads.json").resolve()
geojson_file = Path("./input_files/roads.geojson").resolve()
output_file = Path('./input_files/output_roads.geojson').resolve()
# Initialize a list to store the roads in the region

View File

@ -0,0 +1,86 @@
import pandas as pd
import numpy as np
class DemandShiftProcessor:
def __init__(self, city):
self.city = city
def random_shift(self, series):
shift_amount = np.random.randint(0, round(0.005 * len(series)))
return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series)))
def process_demands(self):
heating_dfs = []
cooling_dfs = []
for building in self.city.buildings:
heating_df = self.convert_building_to_dataframe(building, 'heating')
cooling_df = self.convert_building_to_dataframe(building, 'cooling')
heating_df.set_index('Date/Time', inplace=True)
cooling_df.set_index('Date/Time', inplace=True)
shifted_heating_demands = heating_df.apply(self.random_shift, axis=0)
shifted_cooling_demands = cooling_df.apply(self.random_shift, axis=0)
self.update_building_demands(building, shifted_heating_demands, 'heating')
self.update_building_demands(building, shifted_cooling_demands, 'cooling')
heating_dfs.append(shifted_heating_demands)
cooling_dfs.append(shifted_cooling_demands)
combined_heating_df = pd.concat(heating_dfs, axis=1)
combined_cooling_df = pd.concat(cooling_dfs, axis=1)
self.calculate_and_set_simultaneity_factor(combined_heating_df, 'heating')
self.calculate_and_set_simultaneity_factor(combined_cooling_df, 'cooling')
self.save_demands_to_csv(combined_heating_df, 'heating_demands.csv')
self.save_demands_to_csv(combined_cooling_df, 'cooling_demands.csv')
def convert_building_to_dataframe(self, building, demand_type):
if demand_type == 'heating':
data = {
"Date/Time": self.generate_date_time_index(),
"Heating_Demand": building.heating_demand["hour"]
}
else: # cooling
data = {
"Date/Time": self.generate_date_time_index(),
"Cooling_Demand": building.cooling_demand["hour"]
}
return pd.DataFrame(data)
def generate_date_time_index(self):
# Generate hourly date time index for a full year in 2024
date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H')
return date_range.strftime('%m/%d %H:%M:%S').tolist()
def update_building_demands(self, building, shifted_demands, demand_type):
if demand_type == 'heating':
shifted_series = shifted_demands["Heating_Demand"]
building.heating_demand = self.calculate_new_demands(shifted_series)
else: # cooling
shifted_series = shifted_demands["Cooling_Demand"]
building.cooling_demand = self.calculate_new_demands(shifted_series)
def calculate_new_demands(self, shifted_series):
new_demand = {
"hour": shifted_series.tolist(),
"month": self.calculate_monthly_demand(shifted_series),
"year": [shifted_series.sum()]
}
return new_demand
def calculate_monthly_demand(self, series):
series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S')
monthly_demand = series.resample('M').sum()
return monthly_demand.tolist()
def calculate_and_set_simultaneity_factor(self, combined_df, demand_type):
total_demand_original = combined_df.sum(axis=1)
peak_total_demand_original = total_demand_original.max()
individual_peak_demands = combined_df.max(axis=0)
sum_individual_peak_demands = individual_peak_demands.sum()
if demand_type == 'heating':
self.city.simultaneity_factor_heating = peak_total_demand_original / sum_individual_peak_demands
else: # cooling
self.city.simultaneity_factor_cooling = peak_total_demand_original / sum_individual_peak_demands
def save_demands_to_csv(self, df, filename):
df.to_csv(filename)

749
summer_school.py Normal file
View File

@ -0,0 +1,749 @@
from pathlib import Path
# from scripts.ep_workflow import energy_plus_workflow
from hub.helpers.monthly_values import MonthlyValues
from hub.imports.geometry_factory import GeometryFactory
from hub.helpers.dictionaries import Dictionaries
from hub.imports.construction_factory import ConstructionFactory
from hub.imports.usage_factory import UsageFactory
from hub.imports.weather_factory import WeatherFactory
import hub.helpers.constants as cte
from hub.imports.energy_systems_factory import EnergySystemsFactory
from hub.helpers.peak_loads import PeakLoads
from pathlib import Path
import subprocess
from hub.imports.results_factory import ResultFactory
from hub.imports.energy_systems_factory import EnergySystemsFactory
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
from scripts.solar_angles import CitySolarAngles
import hub.helpers.constants as cte
from hub.exports.exports_factory import ExportsFactory
from scripts.pv_sizing_and_simulation import PVSizingSimulation
import pandas as pd
import geopandas as gpd
import json
#%% # -----------------------------------------------
# Specify the GeoJSON file path
#%% # -----------------------------------------------
input_files_path = (Path(__file__).parent / 'input_files')
output_path = (Path(__file__).parent / 'out_files').resolve()
output_path.mkdir(parents=True, exist_ok=True)
energy_plus_output_path = output_path / 'energy_plus_outputs'
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
simulation_results_path.mkdir(parents=True, exist_ok=True)
sra_output_path = output_path / 'sra_outputs'
sra_output_path.mkdir(parents=True, exist_ok=True)
cost_analysis_output_path = output_path / 'cost_analysis'
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
#%%-----------------------------------------------
#"""add geojson paths and create city for Baseline"""
#%% # -----------------------------------------------
geojson_file_path_baseline = output_path / 'updated_buildings_with_all_data_baseline.geojson'
geojson_file_path_2024 = output_path / 'updated_buildings_with_all_data_2024.geojson'
with open(geojson_file_path_baseline , 'r') as f:
building_type_data = json.load(f)
with open(geojson_file_path_2024, 'r') as f:
building_type_data_2024 = json.load(f)
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=geojson_file_path_baseline,
height_field='maximum_roof_height',
year_of_construction_field='year_built',
function_field='building_type',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
#%%----------------------------------------------
# Enrich city data
#%% # ----------------------------------------------
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
# #energy plus is not going to be processed here, as demand has been obtained before
# energy_plus_workflow(city)
#%% # -----------------------------------------------
#"""Enrich city with geojson file data"""
#%% # -----------------------------------------------
percentage_data = {
1646: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2672.550473, "total_floor_area": 26725.50473},
1647: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2653.626087, "total_floor_area": 26536.26087},
1648: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1056.787496, "total_floor_area": 10567.87496},
1649: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1906.620746, "total_floor_area": 19066.20746},
1650: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 659.1119416, "total_floor_area": 5272.895533},
1651: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1167.208109, "total_floor_area": 9337.664871},
1652: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1193.251653, "total_floor_area": 9546.013222},
1653: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1491.722543, "total_floor_area": 11933.78035},
1654: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1168.005028, "total_floor_area": 9344.040224},
1655: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1264.906961, "total_floor_area": 10119.25569},
1656: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1281.768818, "total_floor_area": 10254.15054},
1657: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 290.3886018, "total_floor_area": 2323.108814},
1658: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 847.5095193, "total_floor_area": 6780.076155},
1659: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1115.319153, "total_floor_area": 8922.553224},
1660: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 469.2918062, "total_floor_area": 3754.33445},
1661: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1292.298346, "total_floor_area": 10338.38677},
1662: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 625.7828863, "total_floor_area": 5006.263091},
1663: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1876.02897, "total_floor_area": 15008.23176},
1664: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1118.224781, "total_floor_area": 22364.49562},
1665: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 1502.787808, "total_floor_area": 30055.75617},
1666: {"type1_%": 0.891045711, "type2_%": 0.108954289, "type3_%": 0, "roof_area": 3038.486076, "total_floor_area": 30384.86076},
1667: {"type1_%": 0.8, "type2_%": 0.2, "type3_%": 0, "roof_area": 1343.832818, "total_floor_area": 13438.32818},
1668: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 961.0996956, "total_floor_area": 4805.498478},
1669: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 489.1282111, "total_floor_area": 1956.512845},
1673: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 1693.141465, "total_floor_area": 5079.424396},
1674: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 3248.827576, "total_floor_area": 9746.482729},
1675: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 4086.842191, "total_floor_area": 12260.52657},
1676: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 2786.114146, "total_floor_area": 11144.45658},
1677: {"type1_%": 1, "type2_%": 0, "type3_%": 0, "roof_area": 5142.784184, "total_floor_area": 15428.35255},
1678: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 6068.664574, "total_floor_area": 18205.99372},
1679: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 5646.751407, "total_floor_area": 16940.25422},
1680: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 1601.765953, "total_floor_area": 4805.297859},
1681: {"type1_%": 0.7, "type2_%": 0.3, "type3_%": 0, "roof_area": 9728.221797, "total_floor_area": 29184.66539},
1687: {"type1_%": 0.606611029, "type2_%": 0.28211422, "type3_%": 0.11127475, "roof_area": 4268.608743, "total_floor_area": 59760.52241},
1688: {"type1_%": 0.92, "type2_%": 0.08, "type3_%": 0, "roof_area": 2146.654828, "total_floor_area": 38639.7869},
1689: {"type1_%": 0.96, "type2_%": 0.04, "type3_%": 0, "roof_area": 2860.270711, "total_floor_area": 57205.41421},
1690: {"type1_%": 0.94, "type2_%": 0.06, "type3_%": 0, "roof_area": 2189.732519, "total_floor_area": 28466.52275},
1691: {"type1_%": 0.75, "type2_%": 0.25, "type3_%": 0, "roof_area": 3159.077523, "total_floor_area": 31590.77523},
}
def enrich_buildings_with_geojson_data (building_type_data, city):
for building in city.buildings:
for idx, feature in enumerate(building_type_data['features']):
if feature['properties']['id'] == str(building.name):
building.heating_demand[cte.HOUR] = [x *1000* cte.WATTS_HOUR_TO_JULES for x in building_type_data['features'][idx]['properties'].get('heating_demand_kWh', [0])]
building.cooling_demand[cte.HOUR] = [x *1000* cte.WATTS_HOUR_TO_JULES for x in building_type_data['features'][idx]['properties'].get('cooling_demand_kWh', [0])]
building.domestic_hot_water_heat_demand[cte.HOUR] = [x *1000* cte.WATTS_HOUR_TO_JULES for x in building_type_data['features'][idx]['properties'].get('domestic_hot_water_heat_demand_kWh', [0])]
building.appliances_electrical_demand[cte.HOUR] = [x *1000* cte.WATTS_HOUR_TO_JULES for x in building_type_data['features'][idx]['properties'].get('appliances_electrical_demand_kWh', [0])]
building.lighting_electrical_demand[cte.HOUR] = [x *1000* cte.WATTS_HOUR_TO_JULES for x in building_type_data['features'][idx]['properties'].get('lighting_electrical_demand_kWh', [0])]
building.heating_demand[cte.MONTH] = MonthlyValues.get_total_month(building.heating_demand[cte.HOUR])
building.cooling_demand[cte.MONTH] = MonthlyValues.get_total_month(building.cooling_demand[cte.HOUR])
building.domestic_hot_water_heat_demand[cte.MONTH] = (MonthlyValues.get_total_month(building.domestic_hot_water_heat_demand[cte.HOUR]))
building.appliances_electrical_demand[cte.MONTH] = (MonthlyValues.get_total_month(building.appliances_electrical_demand[cte.HOUR]))
building.lighting_electrical_demand[cte.MONTH] = (MonthlyValues.get_total_month(building.lighting_electrical_demand[cte.HOUR]))
building.heating_demand[cte.YEAR] = [sum(building.heating_demand[cte.MONTH])]
building.cooling_demand[cte.YEAR] = [sum(building.cooling_demand[cte.MONTH])]
building.domestic_hot_water_heat_demand[cte.YEAR] = [sum(building.domestic_hot_water_heat_demand[cte.MONTH])]
building.appliances_electrical_demand[cte.YEAR] = [sum(building.appliances_electrical_demand[cte.MONTH])]
building.lighting_electrical_demand[cte.YEAR] = [sum(building.lighting_electrical_demand[cte.MONTH])]
enrich_buildings_with_geojson_data (building_type_data, city)
print('test')
#%%-----------------------------------------------
# """ADD energy systems"""
#%% # -----------------------------------------------
for building in city.buildings:
building.energy_systems_archetype_name = 'system 1 electricity'
EnergySystemsFactory('montreal_custom', city).enrich()
def baseline_to_dict(building):
return {
'heating_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.heating_consumption[cte.HOUR]],
'cooling_consumption_kWh':[x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.cooling_consumption[cte.HOUR]],
'domestic_hot_water_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.domestic_hot_water_consumption[cte.HOUR]],
'appliances_consumption_kWh':[x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.appliances_electrical_demand[cte.HOUR]],
'lighting_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.lighting_electrical_demand[cte.HOUR]]
}
buildings_dic={}
for building in city.buildings:
buildings_dic[building.name]=baseline_to_dict(building)
scenario={}
scenario['baseline']=buildings_dic
print("Scenario 1: Baseline is performed successfully")
del city
del buildings_dic
del building_type_data
#%%-----------------------------------------------
# Scenario 2
#%% # -----------------------------------------------
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=geojson_file_path_2024,
height_field='maximum_roof_height',
year_of_construction_field='year_built',
function_field='building_type',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
#%%-----------------------------------------------
# Enrich city data
#%% # -----------------------------------------------
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
enrich_buildings_with_geojson_data (building_type_data_2024, city)
def to_dict(building,hourly_pv):
return {
'heating_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.heating_consumption[cte.HOUR]],
'cooling_consumption_kWh':[x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.cooling_consumption[cte.HOUR]],
'domestic_hot_water_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.domestic_hot_water_consumption[cte.HOUR]],
'appliances_consumption_kWh':[x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.appliances_electrical_demand[cte.HOUR]],
'lighting_consumption_kWh': [x / (cte.WATTS_HOUR_TO_JULES * 1000) for x in building.lighting_electrical_demand[cte.HOUR]],
'hourly_pv_kWh': [x /(cte.WATTS_HOUR_TO_JULES * 1000) for x in hourly_pv]
}
buildings_dic={}
for building in city.buildings:
building.energy_systems_archetype_name = 'system 1 electricity pv'
EnergySystemsFactory('montreal_custom', city).enrich()
# #%%-----------------------------------------------
# # """SRA"""
# #%% # -----------------------------------------------
ExportsFactory('sra', city, output_path).export()
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
subprocess.run(['sra', str(sra_path)])
ResultFactory('sra', city, output_path).enrich()
solar_angles = CitySolarAngles(city.name,
city.latitude,
city.longitude,
tilt_angle=45,
surface_azimuth_angle=180).calculate
df = pd.DataFrame()
df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)',
'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)']
for building in city.buildings:
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
pv_sizing_simulation = PVSizingSimulation(building,
solar_angles,
tilt_angle=45,
module_height=1,
module_width=2,
ghi=ghi)
pv_sizing_simulation.pv_output()
yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000
yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000
yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3)
yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5)
yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000
roof_area = building.roofs[0].perimeter_area
used_roof = pv_sizing_simulation.available_space()
number_of_pv_panels = pv_sizing_simulation.total_number_of_panels
yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / (3.6e6)
hourly_pv = building.onsite_electrical_production[cte.HOUR]
df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area,
used_roof, number_of_pv_panels, yearly_pv]
buildings_dic[building.name]=to_dict(building,hourly_pv)
# %%-----------------------------------------------
# """South facing facades"""
# %% # -----------------------------------------------
# Function to convert radians to degrees
import math
def radians_to_degrees(radians):
return radians * (180 / math.pi)
# Step 1: Create the walls_id dictionary
walls_id={}
for building in city.buildings:
ids = {}
for walls in building.walls:
id=walls.id
azimuth_degree=radians_to_degrees(float(walls.azimuth))
if azimuth_degree>90.0 or azimuth_degree <float(-90.0):
ids[id]= {
'azimuth': azimuth_degree,
'global_irradiance': walls.global_irradiance[cte.HOUR],
'area': walls.perimeter_area
}
walls_id[building.name] = ids
# Step 2: Calculate pv_on_facade for each wall
for building_id, ids in walls_id.items():
for wall_id, wall_data in ids.items():
if 'global_irradiance' in wall_data:
ghi = [x / cte.WATTS_HOUR_TO_JULES/1000 for x in wall_data['global_irradiance']]
wall_data['pv_on_facade'] = [x * 0.6 * wall_data['area']*0.22 for x in ghi]
walls_dic = output_path / 'walls_id.json'
with open(walls_dic , 'w') as json_file:
json.dump(walls_id, json_file, indent=4)
import pandas as pd
#### EXPORT
# Convert walls_id dictionary to a DataFrame
# Convert walls_id dictionary to DataFrames for static and hourly data
# def convert_walls_id_to_dfs(walls_id):
# static_data = {}
# hourly_data = {}
#
# for building_id, ids in walls_id.items():
# for wall_id, wall_data in ids.items():
# # Static data
# static_data[f"{building_id}_{wall_id}_azimuth"] = wall_data.get('azimuth', None)
# static_data[f"{building_id}_{wall_id}_area"] = wall_data.get('area', None)
#
# if 'pv_on_facade' in wall_data:
# hourly_data[f"{building_id}_{wall_id}_pv_on_facade"] = wall_data['pv_on_facade']
#
# # Create DataFrames
# static_df = pd.DataFrame([static_data])
# hourly_df = pd.DataFrame(hourly_data)
#
# return static_df, hourly_df
# output_path_walls_id_dic =output_path / 'walls_id_data.xlsx'
#
# static_df, hourly_df = convert_walls_id_to_dfs(walls_id)
# with pd.ExcelWriter(output_path_walls_id_dic) as writer:
# static_df.to_excel(writer, sheet_name='Static Data', index=False)
# hourly_df.to_excel(writer, sheet_name='Hourly Data', index=False)
# print(f"Data successfully exported to {output_path}")
# # Save the DataFrame to an Excel file
df.to_csv(output_path / 'pv.csv')
scenario['efficient with PV']=buildings_dic
print("Scenario 2: efficient with PV run successfully")
#%%-----------------------------------------------
# Scenario 3
#%% # -----------------------------------------------
for building in city.buildings:
building.energy_systems_archetype_name = 'PV+4Pipe+DHW'
EnergySystemsFactory('montreal_future', city).enrich()
buildings_dic = {}
for building in city.buildings:
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
buildings_dic[building.name] = to_dict(building, hourly_pv)
scenario['efficient with PV+4Pipe+DHW']=buildings_dic
print("Scenario 3: efficient with PV+4Pipe+DHW run successfully")
def extract_HP_size(building):
dic={
# Heat Pump Rated Heating and Cooling Output
'hp_heat_size': building.energy_systems[1].generation_systems[1].nominal_heat_output/1000,
'hp_cooling_output': building.energy_systems[1].generation_systems[1].nominal_cooling_output/1000,
# Boiler Rated Heat Output
'boiler_heat_output': building.energy_systems[1].generation_systems[0].nominal_heat_output/1000,
# TES characteristics
'tes_volume':building.energy_systems[1].generation_systems[0].energy_storage_systems[0].volume,
'tes_height':building.energy_systems[1].generation_systems[0].energy_storage_systems[0].height,
# DHW HP
'dhw_hp_heat_output': building.energy_systems[-1].generation_systems[0].nominal_heat_output/1000,
# DHW TES Characteristics
'dhw_tes_volume': building.energy_systems[-1].generation_systems[0].energy_storage_systems[0].volume,
'dhw_tes_height': building.energy_systems[-1].generation_systems[0].energy_storage_systems[0].height,
}
return dic
HPs={}
for building in city.buildings:
HPs[building.name]=extract_HP_size(building)
#%%-------------------------------------------------------
#""""EXPORTERS"""
#%%-------------------------------------------------------
# Convert the dictionary to a DataFrame
df = pd.DataFrame.from_dict(HPs, orient='index')
# Save the DataFrame to an Excel file
output_path_HPs =output_path/ 'HPs_data.xlsx'
df.to_excel(output_path_HPs, index_label='building_id')
print(f"Data successfully exported to {output_path}")
import pandas as pd
districts_demands={}
def extract_and_sum_demand_data(scenario, demand_types):
# Conversion factor constant
conversion_factor = 1 / (cte.WATTS_HOUR_TO_JULES * 1000)
# Loop through each scenario
for scenario_key, buildings in scenario.items():
# Loop through each building in the scenario
# Initialize an empty dictionary to store the district demand sums
district_demand = {demand_type: [0] * 8760 for demand_type in demand_types}
district_demand['hourly_pv_kWh']= [0] * 8760
for building_id, building_data in buildings.items():
# Loop through each demand type and sum up the data
for demand_type in demand_types:
if demand_type in building_data:
district_demand[demand_type] = [sum(x) for x in zip(district_demand[demand_type], building_data[demand_type])]
# If PV data is available and relevant
if scenario_key == "efficient with PV":
district_demand['hourly_pv_kWh'] = [sum(x) for x in zip(district_demand['hourly_pv_kWh'], building_data['hourly_pv_kWh'])]
if scenario_key == 'efficient with PV+4Pipe+DHW':
district_demand['hourly_pv_kWh'] = districts_demands["efficient with PV"]['hourly_pv_kWh']
districts_demands[scenario_key]=district_demand
return districts_demands
# Example usage
# Assuming 'scenario' is a dictionary with the required structure and 'cte' is defined somewhere with WATTS_HOUR_TO_JULES constant
demand_types = [
'heating_consumption_kWh',
'cooling_consumption_kWh',
'domestic_hot_water_consumption_kWh',
'appliances_consumption_kWh',
'lighting_consumption_kWh',
# 'hourly_pv_kWh' # Include this only if you want to consider PV data
]
# # Call the function with your scenario data
district_demand = extract_and_sum_demand_data(scenario, demand_types)
#
# """"EXPORTERS"""
# import pandas as pd
#
#
# Export the DataFrame to an Excel file
excel_file_path = r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\districts_balance.xlsx'
# df.to_excel(excel_file_path, index=True, index_label='Building')
# Create an Excel writer object
with pd.ExcelWriter(excel_file_path, engine='xlsxwriter') as writer:
for scenarios,demands in district_demand.items():
# Convert demands to a DataFrame
df_demands = pd.DataFrame(demands)
# Convert building_id to string and check its length
sheet_name = str(scenarios)
if len(sheet_name) > 31:
sheet_name = sheet_name[:31] # Truncate to 31 characters if necessary
# Write the DataFrame to a specific sheet named after the building_id
df_demands.to_excel(writer, sheet_name=sheet_name, index=False)
print("district balance data is exported successfully")
import pandas as pd
# Assuming your scenario dictionary is already defined as follows:
# scenario = {
# 'baseline': { ... },
# 'efficient with PV': { ... }
# }
def dict_to_df_col_wise(building_data):
"""
Converts a dictionary of building data to a DataFrame.
Args:
building_data (dict): Dictionary containing building data where keys are building ids and values are dictionaries
with hourly data for various demand types.
Returns:
pd.DataFrame: DataFrame with columns for each building and demand type.
"""
# Create a dictionary to hold DataFrames for each demand type
df_dict= {}
# Loop over each building
for building_id, data in building_data.items():
# Create a DataFrame for this building's data
building_df = pd.DataFrame(data)
# Rename columns to include building_id
building_df.columns = [f"{building_id}_{col}" for col in building_df.columns]
# Add this DataFrame to the dictionary
df_dict[building_id] = building_df
# Concatenate all building DataFrames column-wise
result_df = pd.concat(df_dict.values(), axis=1)
return result_df
# Create DataFrames for each scenario
baseline_df = dict_to_df_col_wise(scenario['baseline'])
efficient_with_pv_df = dict_to_df_col_wise(scenario['efficient with PV'])
efficient_with_pv_hps = dict_to_df_col_wise(scenario['efficient with PV+4Pipe+DHW'])
# Write the DataFrames to an Excel file with two separate sheets
with pd.ExcelWriter(r'C:\Users\a_gabald\PycharmProjects\summer_course_2024\out_files\scenario_data.xlsx') as writer:
baseline_df.to_excel(writer, sheet_name='baseline', index=True)
efficient_with_pv_df.to_excel(writer, sheet_name='efficient with PV', index=True)
efficient_with_pv_hps.to_excel(writer, sheet_name='efficient with HPs', index=True)
print("hourly data has been successfully exported per building to scenario_data.xlsx")
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def convert_hourly_to_monthly(hourly_data):
"""
Converts hourly data to monthly data by summing up the values for each month.
Args:
hourly_data (list): List of hourly data (length 8760).
Returns:
list: List of monthly data (length 12).
"""
hourly_series = pd.Series(hourly_data, index=pd.date_range(start='1/1/2023', periods=8760, freq='H'))
monthly_data = hourly_series.resample('M').sum()
return monthly_data.tolist()
import os
def plot_stacked_demands_vs_pv(district_demand, demand_types, output_path, pv_type='hourly_pv_kWh'):
"""
Plots the stacked monthly demand for each scenario and compares it to the PV data.
Args:
district_demand (dict): Dictionary with scenario keys and demand data.
demand_types (list): List of demand types to plot.
output_path (str): Path to save the plots.
pv_type (str): The PV data type to compare against.
"""
os.makedirs(output_path, exist_ok=True)
for scenario_key, demand_data in district_demand.items():
# Convert hourly data to monthly data for each demand type
monthly_data = {demand_type: convert_hourly_to_monthly(demand_data[demand_type]) for demand_type in
demand_types}
monthly_pv = convert_hourly_to_monthly(demand_data.get(pv_type, [0] * 8760))
# Create a DataFrame for easier plotting
combined_data = pd.DataFrame(monthly_data)
combined_data['Month'] = range(1, 13)
combined_data['PV'] = monthly_pv
# Plotting
fig, ax1 = plt.subplots(figsize=(14, 8))
# Plot stacked demands
combined_data.set_index('Month', inplace=True)
combined_data[demand_types].plot(kind='bar', stacked=True, ax=ax1, colormap='tab20')
ax1.set_xlabel('Month')
ax1.set_ylabel('Energy Demand (kWh)')
ax1.set_title(f'Monthly Energy Demand and PV Generation for {scenario_key}')
# Plot PV data on the secondary y-axis
ax2 = ax1.twinx()
ax2.plot(combined_data.index, combined_data['PV'], color='black', linestyle='-', marker='o',
label='PV Generation')
ax2.set_ylabel('PV Generation (kWh)')
# Add legends
ax1.legend(loc='upper left')
ax2.legend(loc='upper right')
ax1.set_xticks(combined_data.index)
ax1.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
# Save the plot
plt.savefig(os.path.join(output_path, f'{scenario_key}_monthly_demand_vs_pv.png'))
plt.close()
# Example usage
# district_demand = extract_and_sum_demand_data(scenario, demand_types)
# Specify the demand types and PV type
demand_types = [
'heating_consumption_kWh',
'cooling_consumption_kWh',
'domestic_hot_water_consumption_kWh',
'appliances_consumption_kWh',
'lighting_consumption_kWh'
]
# Plot the data
plot_stacked_demands_vs_pv(district_demand, demand_types, output_path)
# Plot the data
print('test')
import csv
clusters=pd.read_csv(output_path/'clusters.csv')
# Step 2: Extract the demand data for each building
def extract_building_demand(city):
building_demand = {}
for building in city.buildings:
demands = {
'heating_demand': [x / 1000 * cte.WATTS_HOUR_TO_JULES for x in building.heating_demand[cte.HOUR]],
'cooling_demand': [x / 1000 * cte.WATTS_HOUR_TO_JULES for x in building.cooling_demand[cte.HOUR]],
'domestic_hot_water_demand': [x / 1000 * cte.WATTS_HOUR_TO_JULES for x in building.domestic_hot_water_heat_demand[cte.HOUR]],
'appliances_electrical_demand': [x / 1000 * cte.WATTS_HOUR_TO_JULES for x in building.appliances_electrical_demand[cte.HOUR]],
'lighting_electrical_demand': [x / 1000 * cte.WATTS_HOUR_TO_JULES for x in building.lighting_electrical_demand[cte.HOUR]]
}
building_demand[building.name] = demands
return building_demand
# Step 3: Sum the demand types for each cluster
def sum_demands_by_cluster(building_demand, clusters, demand_types):
cluster_demands = {cluster: {demand_type: [0] * 8760 for demand_type in demand_types} for cluster in clusters['cluster'].unique()}
for _, row in clusters.iterrows():
building_id = str(row['id'])
cluster = row['cluster']
if building_id in building_demand:
for demand_type in demand_types:
cluster_demands[cluster][demand_type] = [sum(x) for x in zip(cluster_demands[cluster][demand_type], building_demand[building_id][demand_type])]
return cluster_demands
def plot_demands_by_cluster(cluster_demands, demand_types, output_folder):
import os
os.makedirs(output_folder, exist_ok=True)
for cluster, demands in cluster_demands.items():
plt.figure(figsize=(15, 10))
for demand_type in demand_types:
plt.plot(demands[demand_type], label=demand_type)
plt.title(f'Summed Demands for Cluster {cluster}')
plt.xlabel('Hour of the Year')
plt.ylabel('Demand (kWh)')
plt.legend(loc='upper right')
plt.grid(True)
plt.tight_layout()
plt.savefig(os.path.join(output_folder, f'cluster_{cluster}_summed_demands.png'))
plt.close()
# Example usage
demand_types = [
'heating_demand',
'cooling_demand',
'domestic_hot_water_demand',
'appliances_electrical_demand',
'lighting_electrical_demand'
]
# Extract the building demand data
building_demand = extract_building_demand(city)
cluster_demands = sum_demands_by_cluster(building_demand, clusters, demand_types)
# Create a DataFrame to export the results
cluster_demands_df = {f"{cluster}_{demand_type}": data for cluster, demands in cluster_demands.items() for
demand_type, data in demands.items()}
cluster_demands_df = pd.DataFrame(cluster_demands_df)
# Save the results to an Excel file
cluster_demands_df.to_excel(output_path/'cluster_demands.xlsx', index=False)
print(f"Clustered demand data successfully exported to {output_path}")
#%%-----------------------------------------------
# Scenario 4
#%% # -----------------------------------------------
del city
del buildings_dic
geojson_file_path_clusters= output_path / 'new.geojson'
with open(geojson_file_path_clusters , 'r') as f:
building_type_data_new = json.load(f)
# Create city object from GeoJSON file
city = GeometryFactory('geojson',
path=geojson_file_path_clusters,
height_field='maximum_roof_height',
year_of_construction_field='year_built',
function_field='building_type',
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
#%%-----------------------------------------------
# Enrich city data
#%% # -----------------------------------------------
ConstructionFactory('nrcan', city).enrich()
UsageFactory('nrcan', city).enrich()
WeatherFactory('epw', city).enrich()
buildings_clusters={
1651: 4,
1662: 0,
1667: 1,
1674: 2,
1688: 3
}
for building_id in buildings_clusters:
cluster=buildings_clusters[building_id]
for idx, feature in enumerate(building_type_data_new['features']):
if feature['properties']['id'] == str(building_id):
building_type_data_new['features'][idx]['properties']['heating_demand_kWh']=cluster_demands[cluster]['heating_demand']
building_type_data_new['features'][idx]['properties']['cooling_demand_kWh'] = cluster_demands[cluster]['cooling_demand']
building_type_data_new['features'][idx]['properties']['domestic_hot_water_heat_demand_kWh'] = cluster_demands[cluster]['domestic_hot_water_demand']
building_type_data_new['features'][idx]['properties']['appliances_electrical_demand_kWh'] = cluster_demands[cluster]['appliances_electrical_demand']
building_type_data_new['features'][idx]['properties']['lighting_electrical_demand_kWh'] = cluster_demands[cluster]['lighting_electrical_demand']
enrich_buildings_with_geojson_data (building_type_data_new, city)
for building in city.buildings:
building.energy_systems_archetype_name = 'PV+4Pipe+DHW'
EnergySystemsFactory('montreal_future', city).enrich()
buildings_dic = {}
for building in city.buildings:
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
buildings_dic[building.name] = to_dict(building, hourly_pv)
scenario['efficient with PV+4Pipe+DHW']=buildings_dic
print("Scenario 4: efficient with PV+4Pipe+DHW run successfully for Clusters")
def extract_HP_size(building):
dic={
# Heat Pump Rated Heating and Cooling Output
'hp_heat_size': building.energy_systems[1].generation_systems[1].nominal_heat_output/1000,
'hp_cooling_output': building.energy_systems[1].generation_systems[1].nominal_cooling_output/1000,
# Boiler Rated Heat Output
'boiler_heat_output': building.energy_systems[1].generation_systems[0].nominal_heat_output/1000,
# TES characteristics
'tes_volume':building.energy_systems[1].generation_systems[0].energy_storage_systems[0].volume,
'tes_height':building.energy_systems[1].generation_systems[0].energy_storage_systems[0].height,
# DHW HP
'dhw_hp_heat_output': building.energy_systems[-1].generation_systems[0].nominal_heat_output/1000,
# DHW TES Characteristics
'dhw_tes_volume': building.energy_systems[-1].generation_systems[0].energy_storage_systems[0].volume,
'dhw_tes_height': building.energy_systems[-1].generation_systems[0].energy_storage_systems[0].height,
}
return dic
HPs={}
for building in city.buildings:
HPs[building.name]=extract_HP_size(building)
#%%-------------------------------------------------------
#""""EXPORTERS"""
#%%-------------------------------------------------------
# Convert the dictionary to a DataFrame
df = pd.DataFrame.from_dict(HPs, orient='index')
# Save the DataFrame to an Excel file
output_path_HPs =output_path/ 'HPs_data_sc4.xlsx'
df.to_excel(output_path_HPs, index_label='building_id')
print(f"Data successfully exported to {output_path}")