pv simulation code added
This commit is contained in:
parent
aee505aab6
commit
3e5c54e7cf
80
pv_assessment.py
Normal file
80
pv_assessment.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from pathlib import Path
|
||||||
|
import subprocess
|
||||||
|
from hub.imports.geometry_factory import GeometryFactory
|
||||||
|
from hub.helpers.dictionaries import Dictionaries
|
||||||
|
from hub.imports.construction_factory import ConstructionFactory
|
||||||
|
from hub.imports.usage_factory import UsageFactory
|
||||||
|
from hub.imports.weather_factory import WeatherFactory
|
||||||
|
from hub.imports.results_factory import ResultFactory
|
||||||
|
from scripts.solar_angles import CitySolarAngles
|
||||||
|
from scripts.ep_workflow import energy_plus_workflow
|
||||||
|
import hub.helpers.constants as cte
|
||||||
|
from hub.exports.exports_factory import ExportsFactory
|
||||||
|
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||||
|
# Specify the GeoJSON file path
|
||||||
|
input_files_path = (Path(__file__).parent / 'input_files')
|
||||||
|
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
geojson_file_path = input_files_path / 'test.geojson'
|
||||||
|
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||||
|
output_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||||
|
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||||
|
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
sra_output_path = output_path / 'sra_outputs'
|
||||||
|
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||||
|
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
# Create city object from GeoJSON file
|
||||||
|
city = GeometryFactory('geojson',
|
||||||
|
path=geojson_file_path,
|
||||||
|
height_field='height',
|
||||||
|
year_of_construction_field='year_of_construction',
|
||||||
|
function_field='function',
|
||||||
|
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||||
|
# Enrich city data
|
||||||
|
ConstructionFactory('nrcan', city).enrich()
|
||||||
|
UsageFactory('nrcan', city).enrich()
|
||||||
|
WeatherFactory('epw', city).enrich()
|
||||||
|
ExportsFactory('sra', city, output_path).export()
|
||||||
|
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||||
|
subprocess.run(['sra', str(sra_path)])
|
||||||
|
ResultFactory('sra', city, output_path).enrich()
|
||||||
|
energy_plus_workflow(city, energy_plus_output_path)
|
||||||
|
solar_angles = CitySolarAngles(city.name,
|
||||||
|
city.latitude,
|
||||||
|
city.longitude,
|
||||||
|
tilt_angle=45,
|
||||||
|
surface_azimuth_angle=180).calculate
|
||||||
|
df = pd.DataFrame()
|
||||||
|
df.index = ['yearly lighting (kWh)', 'yearly appliance (kWh)', 'yearly heating (kWh)', 'yearly cooling (kWh)',
|
||||||
|
'yearly dhw (kWh)', 'roof area (m2)', 'used area for pv (m2)', 'number of panels', 'pv production (kWh)']
|
||||||
|
for building in city.buildings:
|
||||||
|
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||||
|
pv_sizing_simulation = PVSizingSimulation(building,
|
||||||
|
solar_angles,
|
||||||
|
tilt_angle=45,
|
||||||
|
module_height=1,
|
||||||
|
module_width=2,
|
||||||
|
ghi=ghi)
|
||||||
|
pv_sizing_simulation.pv_output()
|
||||||
|
yearly_lighting = building.lighting_electrical_demand[cte.YEAR][0] / 1000
|
||||||
|
yearly_appliance = building.appliances_electrical_demand[cte.YEAR][0] / 1000
|
||||||
|
yearly_heating = building.heating_demand[cte.YEAR][0] / (3.6e6 * 3)
|
||||||
|
yearly_cooling = building.cooling_demand[cte.YEAR][0] / (3.6e6 * 4.5)
|
||||||
|
yearly_dhw = building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1000
|
||||||
|
roof_area = building.roofs[0].perimeter_area
|
||||||
|
used_roof = pv_sizing_simulation.available_space()
|
||||||
|
number_of_pv_panels = pv_sizing_simulation.total_number_of_panels
|
||||||
|
yearly_pv = building.onsite_electrical_production[cte.YEAR][0] / 1000
|
||||||
|
df[f'{building.name}'] = [yearly_lighting, yearly_appliance, yearly_heating, yearly_cooling, yearly_dhw, roof_area,
|
||||||
|
used_roof, number_of_pv_panels, yearly_pv]
|
||||||
|
|
||||||
|
df.to_csv(output_path / 'pv.csv')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
59
scripts/pv_sizing_and_simulation.py
Normal file
59
scripts/pv_sizing_and_simulation.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
from scripts.radiation_tilted import RadiationTilted
|
||||||
|
import hub.helpers.constants as cte
|
||||||
|
from hub.helpers.monthly_values import MonthlyValues
|
||||||
|
|
||||||
|
|
||||||
|
class PVSizingSimulation(RadiationTilted):
|
||||||
|
def __init__(self, building, solar_angles, tilt_angle, module_height, module_width, ghi):
|
||||||
|
super().__init__(building, solar_angles, tilt_angle, ghi)
|
||||||
|
self.module_height = module_height
|
||||||
|
self.module_width = module_width
|
||||||
|
self.total_number_of_panels = 0
|
||||||
|
self.enrich()
|
||||||
|
|
||||||
|
def available_space(self):
|
||||||
|
roof_area = self.building.roofs[0].perimeter_area
|
||||||
|
maintenance_factor = 0.1
|
||||||
|
orientation_factor = 0.2
|
||||||
|
if self.building.function == cte.RESIDENTIAL:
|
||||||
|
mechanical_equipment_factor = 0.2
|
||||||
|
else:
|
||||||
|
mechanical_equipment_factor = 0.3
|
||||||
|
available_roof = (maintenance_factor + orientation_factor + mechanical_equipment_factor) * roof_area
|
||||||
|
return available_roof
|
||||||
|
|
||||||
|
def inter_row_spacing(self):
|
||||||
|
winter_solstice = self.df[(self.df['AST'].dt.month == 12) &
|
||||||
|
(self.df['AST'].dt.day == 21) &
|
||||||
|
(self.df['AST'].dt.hour == 12)]
|
||||||
|
solar_altitude = winter_solstice['solar altitude'].values[0]
|
||||||
|
solar_azimuth = winter_solstice['solar azimuth'].values[0]
|
||||||
|
distance = ((self.module_height * abs(math.cos(math.radians(solar_azimuth)))) /
|
||||||
|
math.tan(math.radians(solar_altitude)))
|
||||||
|
distance = float(format(distance, '.1f'))
|
||||||
|
return distance
|
||||||
|
|
||||||
|
def number_of_panels(self, available_roof, inter_row_distance):
|
||||||
|
space_dimension = math.sqrt(available_roof)
|
||||||
|
space_dimension = float(format(space_dimension, '.2f'))
|
||||||
|
panels_per_row = math.ceil(space_dimension / self.module_width)
|
||||||
|
number_of_rows = math.ceil(space_dimension / inter_row_distance)
|
||||||
|
self.total_number_of_panels = panels_per_row * number_of_rows
|
||||||
|
return panels_per_row, number_of_rows
|
||||||
|
|
||||||
|
def pv_output(self):
|
||||||
|
radiation = self.total_radiation_tilted
|
||||||
|
pv_module_area = self.module_width * self.module_height
|
||||||
|
available_roof = self.available_space()
|
||||||
|
inter_row_spacing = self.inter_row_spacing()
|
||||||
|
self.number_of_panels(available_roof, inter_row_spacing)
|
||||||
|
self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
|
||||||
|
system_efficiency = 0.2
|
||||||
|
pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
|
||||||
|
cte.WATTS_HOUR_TO_JULES for x in radiation]
|
||||||
|
self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
|
||||||
|
self.building.onsite_electrical_production[cte.MONTH] = (
|
||||||
|
MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
|
||||||
|
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
|
Loading…
Reference in New Issue
Block a user