2021-08-19 21:55:19 -04:00
|
|
|
import pandas as pd
|
|
|
|
from imports.schedules.helpers.schedules_helper import SchedulesHelper
|
|
|
|
import parseidf
|
|
|
|
|
|
|
|
|
|
|
|
|
2021-08-20 18:36:28 -04:00
|
|
|
class IDFParser:
|
|
|
|
_OCCUPANCY_SCHEDULE = ("BLDG_OCC_SCH_wo_SB", "Occupancy")
|
|
|
|
_Activity_Schedule = "ACTIVITY_SCH"
|
|
|
|
_Electrical_Equipent_Schedule = "BLDG_EQUIP_SCH"
|
|
|
|
_Lighting_Schedule = "BLDG_LIGHT_SCH"
|
|
|
|
_Infiltration_Ventilation_Schedule = "INFIL_QUARTER_ON_SCH"
|
2021-08-19 21:55:19 -04:00
|
|
|
|
2021-08-20 18:36:28 -04:00
|
|
|
def __init__(self, city, base_path):
|
|
|
|
self._city = city
|
|
|
|
self._idf_schedules_path = base_path / 'ASHRAE901_OfficeSmall_STD2019_Buffalo.idf'
|
|
|
|
with open(self._idf_schedules_path, 'r') as f:
|
|
|
|
idf = parseidf.parse(f.read())
|
|
|
|
print(idf.keys()) # lists the object types in the idf file
|
|
|
|
print(idf['SCHEDULE:COMPACT']) # lists all the Output:Variable objects in the idf file
|
|
|
|
Holiday = []
|
|
|
|
Winterdesignday = []
|
|
|
|
Summerdesignday = []
|
|
|
|
Customday1 = []
|
|
|
|
Customday2 = []
|
|
|
|
Weekday = []
|
|
|
|
Weekend = []
|
|
|
|
dayType = []
|
|
|
|
compactKeywords = ['Weekdays', 'Weekends', 'Alldays', 'AllOtherDays', 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
|
|
|
|
'Thursday', 'Friday', 'Saturday', 'Holiday', 'Winterdesignday', 'Summerdesignday', 'Customday1',
|
|
|
|
'Customday2']
|
|
|
|
for val in idf['SCHEDULE:COMPACT']:
|
|
|
|
if val[1] == 'BLDG_LIGHT_SCH':
|
|
|
|
count = 0
|
|
|
|
for words in val:
|
|
|
|
dayType.append(words.title().split('For: ')[-1])
|
|
|
|
index = []
|
|
|
|
for count, word_dayType in enumerate(dayType):
|
|
|
|
if word_dayType in compactKeywords:
|
|
|
|
index.append(count)
|
|
|
|
index.append(len(dayType))
|
|
|
|
for i in range(len(index) - 1):
|
|
|
|
numberOfDaySch = list(dayType[index[i] + 1:index[i + 1]])
|
|
|
|
hourlyValues = list(range(24))
|
|
|
|
startHour = 0
|
|
|
|
for num in range(int(len(numberOfDaySch) / 2)):
|
|
|
|
untilTime = list(map(int, (numberOfDaySch[2 * num].split('Until: ')[-1]).split(":")[0:]))
|
|
|
|
endHour = int(untilTime[0] + untilTime[1] / 60)
|
|
|
|
value = float(numberOfDaySch[2 * num + 1])
|
|
|
|
for hour in range(startHour, endHour):
|
|
|
|
hourlyValues[hour] = value
|
|
|
|
print(hour, value)
|
|
|
|
startHour = endHour
|
|
|
|
if dayType[index[i]] == 'Weekdays':
|
|
|
|
Weekday.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Weekends':
|
|
|
|
Weekend.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Holiday':
|
|
|
|
Holiday.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Winterdesignday':
|
|
|
|
Winterdesignday.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Summerdesignday':
|
|
|
|
Summerdesignday.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Customday1':
|
|
|
|
Customday1.append(hourlyValues)
|
|
|
|
elif dayType[index[i]] == 'Customday2':
|
|
|
|
Customday2.append(hourlyValues)
|
|
|
|
else:
|
|
|
|
print('its none of them')
|
|
|
|
idf_schedules = pd.DataFrame(
|
|
|
|
{'week_day': Weekday,
|
|
|
|
'Weekends': Weekend,
|
|
|
|
'Holiday': Holiday,
|
|
|
|
'Winterdesignday': Winterdesignday,
|
|
|
|
'Summerdesignday': Summerdesignday,
|
|
|
|
'Customday1': Customday1,
|
|
|
|
'Customday2': Customday2,
|
|
|
|
})
|
|
|
|
print(idf_schedules)
|
2021-08-19 21:55:19 -04:00
|
|
|
|
2021-08-20 18:36:28 -04:00
|
|
|
for building in city.buildings:
|
|
|
|
schedules = dict()
|
|
|
|
for usage_zone in building.usage_zones:
|
|
|
|
usage_schedules = idf_schedules
|
2021-08-19 21:55:19 -04:00
|
|
|
|
2021-08-20 18:36:28 -04:00
|
|
|
# todo: should we save the data type? How?
|
|
|
|
number_of_schedule_types = 5
|
|
|
|
schedules_per_schedule_type = 6
|
|
|
|
idf_day_types = dict({'week_day': 0, 'Weekends': 1, 'Holiday': 2, 'Winterdesignday': 3, 'Summerdesignday': 4, 'Customday1': 5, 'Customday2': 6})
|
|
|
|
for schedule_types in range(0, number_of_schedule_types):
|
|
|
|
data = pd.DataFrame()
|
|
|
|
columns_names = []
|
|
|
|
name = ''
|
|
|
|
for schedule_day in range(0, len(idf_schedules)):
|
|
|
|
row_cells = usage_schedules.iloc[schedules_per_schedule_type*schedule_types + schedule_day]
|
|
|
|
if schedule_day == idf_day_types['week_day']:
|
|
|
|
name = row_cells[0]
|
|
|
|
columns_names.append(row_cells[2])
|
|
|
|
data1 = row_cells[schedules_per_schedule_type:]
|
|
|
|
data = pd.concat([data, data1], axis=1)
|
|
|
|
data.columns = columns_names
|
|
|
|
schedules[name] = data
|
|
|
|
usage_zone.schedules = schedules
|
2021-08-19 21:55:19 -04:00
|
|
|
|
|
|
|
|