system_assignation/energy_system_analysis_report.py

341 lines
15 KiB
Python

import os
import hub.helpers.constants as cte
import matplotlib.pyplot as plt
import random
import matplotlib.colors as mcolors
from matplotlib import cm
from report_creation import LatexReport
class EnergySystemAnalysisReport:
def __init__(self, city, output_path):
self.city = city
self.output_path = output_path
self.content = []
self.report = LatexReport('energy_system_analysis_report.tex')
def building_energy_info(self):
table_data = [
["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
"Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
]
intensity_table_data = [["Building Name", "Total Floor Area m2", "Heating Demand Intensity kWh/m2",
"Cooling Demand Intensity kWh/m2", "Electricity Intensity kWh/m2"]]
for building in self.city.buildings:
total_floor_area = 0
for zone in building.thermal_zones_from_internal_zones:
total_floor_area += zone.total_floor_area
building_data = [
building.name,
str(building.year_of_construction),
building.function,
str(format(building.heating_demand[cte.YEAR][0] / 1e6, '.2f')),
str(format(building.cooling_demand[cte.YEAR][0] / 1e6, '.2f')),
str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6, '.2f')),
str(format((building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) / 1e6, '.2f')),
]
intensity_data = [
building.name,
str(format(total_floor_area, '.2f')),
str(format(building.heating_demand[cte.YEAR][0] / (1e3 * total_floor_area), '.2f')),
str(format(building.cooling_demand[cte.YEAR][0] / (1e3 * total_floor_area), '.2f')),
str(format(
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
(1e3 * total_floor_area), '.2f'))
]
table_data.append(building_data)
intensity_table_data.append(intensity_data)
self.report.add_table(table_data, caption='City Buildings Energy Demands')
self.report.add_table(intensity_table_data, caption='Energy Intensity Information')
def base_case_charts(self):
save_directory = self.output_path
def autolabel(bars, ax):
for bar in bars:
height = bar.get_height()
ax.annotate('{:.1f}'.format(height),
xy=(bar.get_x() + bar.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
def create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand):
fig, ax = plt.subplots()
bar_width = 0.35
index = range(len(building_names))
bars1 = ax.bar(index, yearly_heating_demand, bar_width, label='Yearly Heating Demand (MWh)')
bars2 = ax.bar([i + bar_width for i in index], yearly_cooling_demand, bar_width,
label='Yearly Cooling Demand (MWh)')
ax.set_xlabel('Building Name')
ax.set_ylabel('Energy Demand (MWh)')
ax.set_title('Yearly HVAC Demands')
ax.set_xticks([i + bar_width / 2 for i in index])
ax.set_xticklabels(building_names, rotation=45, ha='right')
ax.legend()
autolabel(bars1, ax)
autolabel(bars2, ax)
fig.tight_layout()
plt.savefig(save_directory / 'hvac_demand_chart.jpg')
plt.close()
def create_bar_chart(title, ylabel, data, filename, bar_color=None):
fig, ax = plt.subplots()
bar_width = 0.35
index = range(len(building_names))
if bar_color is None:
# Generate a random color
bar_color = random.choice(list(mcolors.CSS4_COLORS.values()))
bars = ax.bar(index, data, bar_width, label=ylabel, color=bar_color)
ax.set_xlabel('Building Name')
ax.set_ylabel('Energy Demand (MWh)')
ax.set_title(title)
ax.set_xticks([i + bar_width / 2 for i in index])
ax.set_xticklabels(building_names, rotation=45, ha='right')
ax.legend()
autolabel(bars, ax)
fig.tight_layout()
plt.savefig(save_directory / filename)
plt.close()
building_names = [building.name for building in self.city.buildings]
yearly_heating_demand = [building.heating_demand[cte.YEAR][0] / 1e6 for building in self.city.buildings]
yearly_cooling_demand = [building.cooling_demand[cte.YEAR][0] / 1e6 for building in self.city.buildings]
yearly_dhw_demand = [building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6 for building in
self.city.buildings]
yearly_electricity_demand = [(building.lighting_electrical_demand[cte.YEAR][0] +
building.appliances_electrical_demand[cte.YEAR][0]) / 1e6 for building in
self.city.buildings]
create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand)
create_bar_chart('Yearly DHW Demands', 'Energy Demand (MWh)', yearly_dhw_demand, 'dhw_demand_chart.jpg', )
create_bar_chart('Yearly Electricity Demands', 'Energy Demand (MWh)', yearly_electricity_demand,
'electricity_demand_chart.jpg')
def maximum_monthly_hvac_chart(self):
save_directory = self.output_path
months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December']
for building in self.city.buildings:
maximum_monthly_heating_load = []
maximum_monthly_cooling_load = []
fig, axs = plt.subplots(1, 2, figsize=(12, 6)) # Create a figure with 2 subplots side by side
for demand in building.heating_peak_load[cte.MONTH]:
maximum_monthly_heating_load.append(demand / 3.6e6)
for demand in building.cooling_peak_load[cte.MONTH]:
maximum_monthly_cooling_load.append(demand / 3.6e6)
# Plot maximum monthly heating load
axs[0].bar(months, maximum_monthly_heating_load, color='red') # Plot on the first subplot
axs[0].set_title('Maximum Monthly Heating Load')
axs[0].set_xlabel('Month')
axs[0].set_ylabel('Load (kW)')
axs[0].tick_params(axis='x', rotation=45)
# Plot maximum monthly cooling load
axs[1].bar(months, maximum_monthly_cooling_load, color='blue') # Plot on the second subplot
axs[1].set_title('Maximum Monthly Cooling Load')
axs[1].set_xlabel('Month')
axs[1].set_ylabel('Load (kW)')
axs[1].tick_params(axis='x', rotation=45)
plt.tight_layout() # Adjust layout to prevent overlapping
plt.savefig(save_directory / f'{building.name}_monthly_maximum_hvac_loads.jpg')
plt.close()
def load_duration_curves(self):
save_directory = self.output_path
for building in self.city.buildings:
heating_demand = [demand / 1000 for demand in building.heating_demand[cte.HOUR]]
cooling_demand = [demand / 1000 for demand in building.cooling_demand[cte.HOUR]]
heating_demand_sorted = sorted(heating_demand, reverse=True)
cooling_demand_sorted = sorted(cooling_demand, reverse=True)
plt.style.use('ggplot')
# Create figure and axis objects with 1 row and 2 columns
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
# Plot sorted heating demand
axs[0].plot(heating_demand_sorted, color='red', linewidth=2, label='Heating Demand')
axs[0].set_xlabel('Hour', fontsize=14)
axs[0].set_ylabel('Heating Demand', fontsize=14)
axs[0].set_title('Heating Load Duration Curve', fontsize=16)
axs[0].grid(True)
axs[0].legend(loc='upper right', fontsize=12)
# Plot sorted cooling demand
axs[1].plot(cooling_demand_sorted, color='blue', linewidth=2, label='Cooling Demand')
axs[1].set_xlabel('Hour', fontsize=14)
axs[1].set_ylabel('Cooling Demand', fontsize=14)
axs[1].set_title('Cooling Load Duration Curve', fontsize=16)
axs[1].grid(True)
axs[1].legend(loc='upper right', fontsize=12)
# Adjust layout
plt.tight_layout()
# Save the plot
plt.savefig(save_directory / f'{building.name}_load_duration_curve.jpg')
# Close the plot to release memory
plt.close()
def individual_building_info(self, building):
table_data = [
["Maximum Monthly HVAC Demands",
f"\\includegraphics[width=1\\linewidth]{{{building.name}_monthly_maximum_hvac_loads.jpg}}"],
["Load Duration Curve", f"\\includegraphics[width=1\\linewidth]{{{building.name}_load_duration_curve.jpg}}"],
]
self.report.add_table(table_data, caption=f'{building.name} Information', first_column_width=1.5)
def building_existing_system_info(self, building):
existing_archetype = building.energy_systems_archetype_name
fuels = []
system_schematic = "-"
heating_system = "-"
cooling_system = "-"
dhw = "-"
electricity = "Grid"
hvac_ec = format((building.heating_consumption[cte.YEAR][0] + building.cooling_consumption[cte.YEAR][0])/1e6, '.2f')
dhw_ec = format(building.domestic_hot_water_consumption[cte.YEAR][0]/1e6, '.2f')
on_site_generation = "-"
yearly_operational_cost = "-"
life_cycle_cost = "-"
for energy_system in building.energy_systems:
if cte.HEATING and cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
heating_system = energy_system.name
dhw = energy_system.name
elif cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
dhw = energy_system.name
elif cte.HEATING in energy_system.demand_types:
heating_system = energy_system.name
elif cte.COOLING in energy_system.demand_types:
cooling_system = energy_system.name
for generation_system in energy_system.generation_systems:
fuels.append(generation_system.fuel_type)
if generation_system.system_type == cte.PHOTOVOLTAIC:
electricity = "Grid-tied PV"
energy_system_table_data = [
["Detail", "Existing System", "Proposed System"],
["Energy System Archetype", existing_archetype, "-"],
["System Schematic", system_schematic, system_schematic],
["Heating System", heating_system, "-"],
["Cooling System", cooling_system, "-"],
["DHW System", dhw, "-"],
["Electricity", electricity, "-"],
["Fuel(s)", str(fuels), "-"],
["HVAC Energy Consumption (MWh)", hvac_ec, "-"],
["DHW Energy Consumption (MWH)", dhw_ec, "-"],
["Yearly Operational Cost (CAD)", yearly_operational_cost, "-"],
["Life Cycle Cost (CAD)", life_cycle_cost, "-"]
]
self.report.add_table(energy_system_table_data, caption= f'Building {building.name} Energy System Characteristics')
def building_fuel_consumption_breakdown(self, building):
save_directory = self.output_path
# Initialize variables to store fuel consumption breakdown
fuel_breakdown = {
"Heating": {"Gas": 0, "Electricity": 0},
"Domestic Hot Water": {"Gas": 0, "Electricity": 0},
"Cooling": {"Electricity": 0},
"Appliance": building.appliances_electrical_demand[cte.YEAR][0] / 1e6,
"Lighting": building.lighting_electrical_demand[cte.YEAR][0] / 1e6
}
# Iterate through energy systems of the building
for energy_system in building.energy_systems:
for demand_type in energy_system.demand_types:
for generation_system in energy_system.generation_systems:
consumption = 0
if demand_type == cte.HEATING:
consumption = building.heating_consumption[cte.YEAR][0] / 1e6
elif demand_type == cte.DOMESTIC_HOT_WATER:
consumption = building.domestic_hot_water_consumption[cte.YEAR][0] / 1e6
elif demand_type == cte.COOLING:
consumption = building.cooling_consumption[cte.YEAR][0] / 1e6
if generation_system.fuel_type == cte.ELECTRICITY:
fuel_breakdown[demand_type]["Electricity"] += consumption
else:
fuel_breakdown[demand_type]["Gas"] += consumption
electricity_labels = ['Appliance', 'Lighting']
electricity_sizes = [fuel_breakdown['Appliance'], fuel_breakdown['Lighting']]
if fuel_breakdown['Heating']['Electricity'] > 0:
electricity_labels.append('Heating')
electricity_sizes.append(fuel_breakdown['Heating']['Electricity'])
if fuel_breakdown['Cooling']['Electricity'] > 0:
electricity_labels.append('Cooling')
electricity_sizes.append(fuel_breakdown['Cooling']['Electricity'])
if fuel_breakdown['Domestic Hot Water']['Electricity'] > 0:
electricity_labels.append('Domestic Hot Water')
electricity_sizes.append(fuel_breakdown['Domestic Hot Water']['Electricity'])
# Data for bar chart
gas_labels = ['Heating', 'Domestic Hot Water']
gas_sizes = [fuel_breakdown['Heating']['Gas'], fuel_breakdown['Domestic Hot Water']['Gas']]
# Set the style
plt.style.use('ggplot')
# Create plot grid
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
# Plot pie chart for electricity consumption breakdown
colors = cm.get_cmap('tab20c', len(electricity_labels))
axs[0].pie(electricity_sizes, labels=electricity_labels,
autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(electricity_sizes):.2f})",
startangle=90, colors=[colors(i) for i in range(len(electricity_labels))])
axs[0].set_title('Electricity Consumption Breakdown')
# Plot bar chart for natural gas consumption breakdown
colors = cm.get_cmap('Paired', len(gas_labels))
axs[1].bar(gas_labels, gas_sizes, color=[colors(i) for i in range(len(gas_labels))])
axs[1].set_ylabel('Consumption (MWh)')
axs[1].set_title('Natural Gas Consumption Breakdown')
# Add grid to bar chart
axs[1].grid(axis='y', linestyle='--', alpha=0.7)
# Add a title to the entire figure
plt.suptitle('Building Energy Consumption Breakdown', fontsize=16, fontweight='bold')
# Adjust layout
plt.tight_layout()
# Save the plot as a high-quality image
plt.savefig(save_directory / f'{building.name}_energy_consumption_breakdown.png', dpi=300)
plt.close()
def create_report(self):
os.chdir(self.output_path)
self.report.add_section('Current Status')
self.building_energy_info()
self.base_case_charts()
self.report.add_image('hvac_demand_chart.jpg', caption='Yearly HVAC Demands')
self.report.add_image('dhw_demand_chart.jpg', caption='Yearly DHW Demands')
self.report.add_image('electricity_demand_chart.jpg', caption='Yearly Electricity Demands')
self.maximum_monthly_hvac_chart()
self.load_duration_curves()
for building in self.city.buildings:
self.individual_building_info(building)
self.building_existing_system_info(building)
self.building_fuel_consumption_breakdown(building)
self.report.add_image(f'{building.name}_energy_consumption_breakdown.png',
caption=f'Building {building.name} Consumption by source and sector breakdown')
self.report.save_report()
self.report.compile_to_pdf()