Compare commits
2 Commits
23b3aca461
...
39d5dcfdaa
Author | SHA1 | Date | |
---|---|---|---|
|
39d5dcfdaa | ||
|
c40900bd30 |
1585013
input_files/roads.json
Normal file
1585013
input_files/roads.json
Normal file
File diff suppressed because it is too large
Load Diff
48
main.py
48
main.py
|
@ -0,0 +1,48 @@
|
|||
from pathlib import Path
|
||||
from scripts.district_heating_network.simultinity_factor import DemandShiftProcessor
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from scripts.district_heating_network.road_processor import road_processor
|
||||
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
from scripts.district_heating_network.geojson_graph_creator import networkx_to_geojson
|
||||
import hub.helpers.constants as cte
|
||||
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
|
||||
energy_plus_workflow(city)
|
||||
|
||||
processor = DemandShiftProcessor(city)
|
||||
processor.process_demands()
|
||||
|
||||
location = [45.43658024628209, -73.66134636914408]
|
||||
|
||||
roads_file = road_processor(location[1], location[0], 0.002)
|
||||
|
||||
dhn_creator = DistrictHeatingNetworkCreator(file_path, roads_file)
|
||||
network_graph = dhn_creator.run()
|
||||
|
||||
networkx_to_geojson(network_graph)
|
||||
|
||||
dhn_creator.plot_network_graph()
|
||||
|
||||
print("Simultaneity Factor Heating:", city.simultaneity_factor_heating)
|
||||
print("Simultaneity Factor Cooling:", city.simultaneity_factor_cooling)
|
|
@ -0,0 +1,282 @@
|
|||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
from shapely.geometry import Polygon, Point, LineString
|
||||
import networkx as nx
|
||||
from typing import List, Tuple
|
||||
from rtree import index
|
||||
import math
|
||||
|
||||
|
||||
def haversine(lon1, lat1, lon2, lat2):
|
||||
"""
|
||||
Calculate the great-circle distance between two points
|
||||
on the Earth specified by their longitude and latitude.
|
||||
"""
|
||||
R = 6371000 # Radius of the Earth in meters
|
||||
phi1 = math.radians(lat1)
|
||||
phi2 = math.radians(lat2)
|
||||
delta_phi = math.radians(lat2 - lat1)
|
||||
delta_lambda = math.radians(lon2 - lon1)
|
||||
|
||||
a = math.sin(delta_phi / 2.0) ** 2 + \
|
||||
math.cos(phi1) * math.cos(phi2) * \
|
||||
math.sin(delta_lambda / 2.0) ** 2
|
||||
|
||||
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
|
||||
return R * c # Output distance in meters
|
||||
|
||||
|
||||
class DistrictHeatingNetworkCreator:
|
||||
def __init__(self, buildings_file: str, roads_file: str):
|
||||
"""
|
||||
Initialize the class with paths to the buildings and roads data files.
|
||||
|
||||
:param buildings_file: Path to the GeoJSON file containing building data.
|
||||
:param roads_file: Path to the GeoJSON file containing roads data.
|
||||
"""
|
||||
self.buildings_file = buildings_file
|
||||
self.roads_file = roads_file
|
||||
|
||||
def run(self) -> nx.Graph:
|
||||
"""
|
||||
Main method to execute the district heating network creation process.
|
||||
:return: NetworkX graph with nodes and edges representing the network.
|
||||
"""
|
||||
self._load_and_process_data()
|
||||
self._find_nearest_roads()
|
||||
self._find_nearest_points()
|
||||
self._break_down_roads()
|
||||
self._create_graph()
|
||||
self._create_mst()
|
||||
self._iteratively_remove_edges()
|
||||
self._add_centroids_to_mst()
|
||||
self._convert_edge_weights_to_meters()
|
||||
return self.final_mst
|
||||
|
||||
def _load_and_process_data(self):
|
||||
"""
|
||||
Load and process the building and road data.
|
||||
"""
|
||||
# Load building data
|
||||
with open(self.buildings_file, 'r') as file:
|
||||
city = json.load(file)
|
||||
|
||||
self.centroids = []
|
||||
self.building_ids = []
|
||||
buildings = city['features']
|
||||
for building in buildings:
|
||||
coordinates = building['geometry']['coordinates'][0]
|
||||
building_polygon = Polygon(coordinates)
|
||||
centroid = building_polygon.centroid
|
||||
self.centroids.append(centroid)
|
||||
self.building_ids.append(building['id'])
|
||||
|
||||
# Load road data
|
||||
with open(self.roads_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
self.lines = [LineString(feature['geometry']['coordinates']) for feature in line_features]
|
||||
self.cleaned_lines = [LineString([line.coords[0], line.coords[-1]]) for line in self.lines]
|
||||
|
||||
def _find_nearest_roads(self):
|
||||
"""
|
||||
Find the nearest road for each building centroid.
|
||||
"""
|
||||
self.closest_roads = []
|
||||
unique_roads_set = set()
|
||||
|
||||
# Create spatial index for roads
|
||||
idx = index.Index()
|
||||
for pos, line in enumerate(self.cleaned_lines):
|
||||
idx.insert(pos, line.bounds)
|
||||
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for pos in idx.nearest(centroid.bounds, 10):
|
||||
road = self.cleaned_lines[pos]
|
||||
distance = road.distance(centroid)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road and closest_road.wkt not in unique_roads_set:
|
||||
unique_roads_set.add(closest_road.wkt)
|
||||
self.closest_roads.append(closest_road)
|
||||
|
||||
def _find_nearest_points(self):
|
||||
"""
|
||||
Find the nearest point on each closest road for each centroid.
|
||||
"""
|
||||
def find_nearest_point_on_line(point: Point, line: LineString) -> Point:
|
||||
return line.interpolate(line.project(point))
|
||||
|
||||
self.nearest_points = []
|
||||
for centroid in self.centroids:
|
||||
min_distance = float('inf')
|
||||
closest_road = None
|
||||
for road in self.closest_roads:
|
||||
distance = centroid.distance(road)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
closest_road = road
|
||||
|
||||
if closest_road:
|
||||
nearest_point = find_nearest_point_on_line(centroid, closest_road)
|
||||
self.nearest_points.append(nearest_point)
|
||||
|
||||
def _break_down_roads(self):
|
||||
"""
|
||||
Break down roads into segments connecting nearest points.
|
||||
"""
|
||||
def break_down_roads(closest_roads: List[LineString], nearest_points_list: List[Point]) -> List[LineString]:
|
||||
new_segments = []
|
||||
for road in closest_roads:
|
||||
coords = list(road.coords)
|
||||
points_on_road = [point for point in nearest_points_list if road.distance(point) < 0.000000001]
|
||||
sorted_points = sorted(points_on_road, key=lambda point: road.project(point))
|
||||
sorted_points.insert(0, Point(coords[0]))
|
||||
sorted_points.append(Point(coords[-1]))
|
||||
for i in range(len(sorted_points) - 1):
|
||||
segment = LineString([sorted_points[i], sorted_points[i + 1]])
|
||||
new_segments.append(segment)
|
||||
return new_segments
|
||||
|
||||
self.new_segments = break_down_roads(self.closest_roads, self.nearest_points)
|
||||
self.cleaned_lines = [line for line in self.cleaned_lines if line not in self.closest_roads]
|
||||
self.cleaned_lines.extend(self.new_segments)
|
||||
|
||||
def _create_graph(self):
|
||||
"""
|
||||
Create a NetworkX graph from the cleaned lines.
|
||||
"""
|
||||
self.G = nx.Graph()
|
||||
for line in self.cleaned_lines:
|
||||
coords = list(line.coords)
|
||||
for i in range(len(coords) - 1):
|
||||
self.G.add_edge(coords[i], coords[i + 1], weight=Point(coords[i]).distance(Point(coords[i + 1])))
|
||||
|
||||
def _create_mst(self):
|
||||
"""
|
||||
Create a Minimum Spanning Tree (MST) from the graph.
|
||||
"""
|
||||
def find_paths_between_nearest_points(g: nx.Graph, nearest_points: List[Point]) -> List[Tuple]:
|
||||
edges = []
|
||||
for i, start_point in enumerate(nearest_points):
|
||||
start = (start_point.x, start_point.y)
|
||||
for end_point in nearest_points[i + 1:]:
|
||||
end = (end_point.x, end_point.y)
|
||||
if nx.has_path(g, start, end):
|
||||
path = nx.shortest_path(g, source=start, target=end, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
edges.extend((u, v, g[u][v]['weight']) for u, v in path_edges)
|
||||
return edges
|
||||
|
||||
edges = find_paths_between_nearest_points(self.G, self.nearest_points)
|
||||
h = nx.Graph()
|
||||
h.add_weighted_edges_from(edges)
|
||||
mst = nx.minimum_spanning_tree(h, weight='weight')
|
||||
final_edges = []
|
||||
for u, v in mst.edges():
|
||||
if nx.has_path(self.G, u, v):
|
||||
path = nx.shortest_path(self.G, source=u, target=v, weight='weight')
|
||||
path_edges = list(zip(path[:-1], path[1:]))
|
||||
final_edges.extend((x, y, self.G[x][y]['weight']) for x, y in path_edges)
|
||||
self.final_mst = nx.Graph()
|
||||
self.final_mst.add_weighted_edges_from(final_edges)
|
||||
|
||||
def _iteratively_remove_edges(self):
|
||||
"""
|
||||
Iteratively remove edges that do not have any nearest points and have one end with only one connection.
|
||||
Also remove nodes that don't have any connections and street nodes with only one connection.
|
||||
"""
|
||||
nearest_points_tuples = [(point.x, point.y) for point in self.nearest_points]
|
||||
|
||||
def find_edges_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
edges_to_remove = []
|
||||
for u, v, d in graph.edges(data=True):
|
||||
if u not in nearest_points_tuples and v not in nearest_points_tuples:
|
||||
if graph.degree(u) == 1 or graph.degree(v) == 1:
|
||||
edges_to_remove.append((u, v, d))
|
||||
return edges_to_remove
|
||||
|
||||
def find_nodes_to_remove(graph: nx.Graph) -> List[Tuple]:
|
||||
nodes_to_remove = []
|
||||
for node in graph.nodes():
|
||||
if graph.degree(node) == 0:
|
||||
nodes_to_remove.append(node)
|
||||
return nodes_to_remove
|
||||
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps = [list(self.final_mst.edges(data=True))]
|
||||
|
||||
while edges_to_remove or find_nodes_to_remove(self.final_mst):
|
||||
self.final_mst.remove_edges_from(edges_to_remove)
|
||||
nodes_to_remove = find_nodes_to_remove(self.final_mst)
|
||||
self.final_mst.remove_nodes_from(nodes_to_remove)
|
||||
edges_to_remove = find_edges_to_remove(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def find_single_connection_street_nodes(graph: nx.Graph) -> List[Tuple]:
|
||||
single_connection_street_nodes = []
|
||||
for node in graph.nodes():
|
||||
if node not in nearest_points_tuples and graph.degree(node) == 1:
|
||||
single_connection_street_nodes.append(node)
|
||||
return single_connection_street_nodes
|
||||
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
|
||||
while single_connection_street_nodes:
|
||||
for node in single_connection_street_nodes:
|
||||
neighbors = list(self.final_mst.neighbors(node))
|
||||
self.final_mst.remove_node(node)
|
||||
for neighbor in neighbors:
|
||||
if self.final_mst.degree(neighbor) == 0:
|
||||
self.final_mst.remove_node(neighbor)
|
||||
single_connection_street_nodes = find_single_connection_street_nodes(self.final_mst)
|
||||
self.final_mst_steps.append(list(self.final_mst.edges(data=True)))
|
||||
|
||||
def _add_centroids_to_mst(self):
|
||||
"""
|
||||
Add centroids to the final MST graph and connect them to their associated node on the graph.
|
||||
"""
|
||||
for i, centroid in enumerate(self.centroids):
|
||||
centroid_tuple = (centroid.x, centroid.y)
|
||||
building_id = self.building_ids[i]
|
||||
self.final_mst.add_node(centroid_tuple, type='building', id=building_id)
|
||||
nearest_point = None
|
||||
min_distance = float('inf')
|
||||
for node in self.final_mst.nodes():
|
||||
if self.final_mst.nodes[node].get('type') != 'building':
|
||||
node_point = Point(node)
|
||||
distance = centroid.distance(node_point)
|
||||
if distance < min_distance:
|
||||
min_distance = distance
|
||||
nearest_point = node
|
||||
|
||||
if nearest_point:
|
||||
self.final_mst.add_edge(centroid_tuple, nearest_point, weight=min_distance)
|
||||
|
||||
def _convert_edge_weights_to_meters(self):
|
||||
"""
|
||||
Convert all edge weights in the final MST graph to meters using the Haversine formula.
|
||||
"""
|
||||
for u, v, data in self.final_mst.edges(data=True):
|
||||
lon1, lat1 = u
|
||||
lon2, lat2 = v
|
||||
distance = haversine(lon1, lat1, lon2, lat2)
|
||||
self.final_mst[u][v]['weight'] = distance
|
||||
|
||||
def plot_network_graph(self):
|
||||
"""
|
||||
Plot the network graph using matplotlib and networkx.
|
||||
"""
|
||||
plt.figure(figsize=(15, 10))
|
||||
pos = {node: (node[0], node[1]) for node in self.final_mst.nodes()}
|
||||
nx.draw_networkx_nodes(self.final_mst, pos, node_color='blue', node_size=50)
|
||||
nx.draw_networkx_edges(self.final_mst, pos, edge_color='gray')
|
||||
plt.title('District Heating Network Graph')
|
||||
plt.axis('off')
|
||||
plt.show()
|
54
scripts/district_heating_network/geojson_graph_creator.py
Normal file
54
scripts/district_heating_network/geojson_graph_creator.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
import json
|
||||
from shapely import LineString, Point
|
||||
import networkx as nx
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def networkx_to_geojson(graph: nx.Graph) -> Path:
|
||||
"""
|
||||
Convert a NetworkX graph to GeoJSON format.
|
||||
|
||||
:param graph: A NetworkX graph.
|
||||
:return: GeoJSON formatted dictionary.
|
||||
"""
|
||||
features = []
|
||||
|
||||
for u, v, data in graph.edges(data=True):
|
||||
line = LineString([u, v])
|
||||
feature = {
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "LineString",
|
||||
"coordinates": list(line.coords)
|
||||
},
|
||||
"properties": {
|
||||
"weight": data.get("weight", 1.0)
|
||||
}
|
||||
}
|
||||
features.append(feature)
|
||||
|
||||
for node, data in graph.nodes(data=True):
|
||||
point = Point(node)
|
||||
feature = {
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Point",
|
||||
"coordinates": list(point.coords)[0]
|
||||
},
|
||||
"properties": {
|
||||
"type": data.get("type", "unknown"),
|
||||
"id": data.get("id", "N/A")
|
||||
}
|
||||
}
|
||||
features.append(feature)
|
||||
|
||||
geojson = {
|
||||
"type": "FeatureCollection",
|
||||
"features": features
|
||||
}
|
||||
|
||||
output_geojson_file = Path('./out_files/network_graph.geojson').resolve()
|
||||
with open(output_geojson_file, 'w') as file:
|
||||
json.dump(geojson, file, indent=4)
|
||||
|
||||
return output_geojson_file
|
56
scripts/district_heating_network/road_processor.py
Normal file
56
scripts/district_heating_network/road_processor.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
from pathlib import Path
|
||||
from shapely.geometry import Polygon, Point, shape
|
||||
import json
|
||||
|
||||
|
||||
def road_processor(x, y, diff):
|
||||
"""
|
||||
Processes a .JSON file to find roads that have at least one node within a specified polygon.
|
||||
|
||||
Parameters:
|
||||
x (float): The x-coordinate of the center of the selection box.
|
||||
y (float): The y-coordinate of the center of the selection box.
|
||||
diff (float): The half-width of the selection box.
|
||||
|
||||
Returns:
|
||||
str: The file path of the output GeoJSON file containing the selected roads.
|
||||
"""
|
||||
diff += 2 * diff
|
||||
# Define the selection polygon
|
||||
selection_box = Polygon([
|
||||
[x + diff, y - diff],
|
||||
[x - diff, y - diff],
|
||||
[x - diff, y + diff],
|
||||
[x + diff, y + diff]
|
||||
])
|
||||
|
||||
# Define input and output file paths
|
||||
geojson_file = Path("./input_files/roads.json").resolve()
|
||||
output_file = Path('./input_files/output_roads.geojson').resolve()
|
||||
|
||||
# Initialize a list to store the roads in the region
|
||||
roads_in_region = []
|
||||
|
||||
# Read the GeoJSON file
|
||||
with open(geojson_file, 'r') as file:
|
||||
roads = json.load(file)
|
||||
line_features = [feature for feature in roads['features'] if feature['geometry']['type'] == 'LineString']
|
||||
|
||||
# Check each road feature
|
||||
for feature in line_features:
|
||||
road_shape = shape(feature['geometry'])
|
||||
# Check if any node of the road is inside the selection box
|
||||
if any(selection_box.contains(Point(coord)) for coord in road_shape.coords):
|
||||
roads_in_region.append(feature)
|
||||
|
||||
# Create a new GeoJSON structure with the selected roads
|
||||
output_geojson = {
|
||||
"type": "FeatureCollection",
|
||||
"features": roads_in_region
|
||||
}
|
||||
|
||||
# Write the selected roads to the output file
|
||||
with open(output_file, 'w') as outfile:
|
||||
json.dump(output_geojson, outfile)
|
||||
|
||||
return output_file
|
80
scripts/district_heating_network/simultinity_factor.py
Normal file
80
scripts/district_heating_network/simultinity_factor.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
class DemandShiftProcessor:
|
||||
def __init__(self, city):
|
||||
self.city = city
|
||||
|
||||
def random_shift(self, series):
|
||||
shift_amount = np.random.randint(0, round(0.005 * len(series)))
|
||||
return series.shift(shift_amount).fillna(series.shift(shift_amount - len(series)))
|
||||
|
||||
def process_demands(self):
|
||||
heating_dfs = []
|
||||
cooling_dfs = []
|
||||
|
||||
for building in self.city.buildings:
|
||||
heating_df = self.convert_building_to_dataframe(building, 'heating')
|
||||
cooling_df = self.convert_building_to_dataframe(building, 'cooling')
|
||||
heating_df.set_index('Date/Time', inplace=True)
|
||||
cooling_df.set_index('Date/Time', inplace=True)
|
||||
shifted_heating_demands = heating_df.apply(self.random_shift, axis=0)
|
||||
shifted_cooling_demands = cooling_df.apply(self.random_shift, axis=0)
|
||||
self.update_building_demands(building, shifted_heating_demands, 'heating')
|
||||
self.update_building_demands(building, shifted_cooling_demands, 'cooling')
|
||||
heating_dfs.append(shifted_heating_demands)
|
||||
cooling_dfs.append(shifted_cooling_demands)
|
||||
|
||||
combined_heating_df = pd.concat(heating_dfs, axis=1)
|
||||
combined_cooling_df = pd.concat(cooling_dfs, axis=1)
|
||||
self.calculate_and_set_simultaneity_factor(combined_heating_df, 'heating')
|
||||
self.calculate_and_set_simultaneity_factor(combined_cooling_df, 'cooling')
|
||||
|
||||
def convert_building_to_dataframe(self, building, demand_type):
|
||||
if demand_type == 'heating':
|
||||
data = {
|
||||
"Date/Time": self.generate_date_time_index(),
|
||||
"Heating_Demand": building.heating_demand["hour"]
|
||||
}
|
||||
else: # cooling
|
||||
data = {
|
||||
"Date/Time": self.generate_date_time_index(),
|
||||
"Cooling_Demand": building.cooling_demand["hour"]
|
||||
}
|
||||
return pd.DataFrame(data)
|
||||
|
||||
def generate_date_time_index(self):
|
||||
# Generate hourly date time index for a full year in 2024
|
||||
date_range = pd.date_range(start="2013-01-01 00:00:00", end="2013-12-31 23:00:00", freq='H')
|
||||
return date_range.strftime('%m/%d %H:%M:%S').tolist()
|
||||
|
||||
def update_building_demands(self, building, shifted_demands, demand_type):
|
||||
if demand_type == 'heating':
|
||||
shifted_series = shifted_demands["Heating_Demand"]
|
||||
building.heating_demand = self.calculate_new_demands(shifted_series)
|
||||
else: # cooling
|
||||
shifted_series = shifted_demands["Cooling_Demand"]
|
||||
building.cooling_demand = self.calculate_new_demands(shifted_series)
|
||||
|
||||
def calculate_new_demands(self, shifted_series):
|
||||
new_demand = {
|
||||
"hour": shifted_series.tolist(),
|
||||
"month": self.calculate_monthly_demand(shifted_series),
|
||||
"year": [shifted_series.sum()]
|
||||
}
|
||||
return new_demand
|
||||
|
||||
def calculate_monthly_demand(self, series):
|
||||
series.index = pd.to_datetime(series.index, format='%m/%d %H:%M:%S')
|
||||
monthly_demand = series.resample('M').sum()
|
||||
return monthly_demand.tolist()
|
||||
|
||||
def calculate_and_set_simultaneity_factor(self, combined_df, demand_type):
|
||||
total_demand_original = combined_df.sum(axis=1)
|
||||
peak_total_demand_original = total_demand_original.max()
|
||||
individual_peak_demands = combined_df.max(axis=0)
|
||||
sum_individual_peak_demands = individual_peak_demands.sum()
|
||||
if demand_type == 'heating':
|
||||
self.city.simultaneity_factor_heating = peak_total_demand_original / sum_individual_peak_demands
|
||||
else: # cooling
|
||||
self.city.simultaneity_factor_cooling = peak_total_demand_original / sum_individual_peak_demands
|
Loading…
Reference in New Issue
Block a user