Compare commits
2 Commits
23b3aca461
...
39d5dcfdaa
Author | SHA1 | Date | |
---|---|---|---|
|
39d5dcfdaa | ||
|
c40900bd30 |
|
@ -2,7 +2,7 @@
|
|||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="C:\Users\marie.proville\miniconda3\envs\Hub" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="hub" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
|
@ -1,7 +1,4 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkUUID" value="97386509-ec9b-4dd7-929b-7585219c0447" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="hub" project-jdk-type="Python SDK" />
|
||||
</project>
|
|
@ -1,3 +1,4 @@
|
|||
from scripts.geojson_creator import process_geojson
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
|
@ -7,94 +8,57 @@ from hub.imports.construction_factory import ConstructionFactory
|
|||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts.energy_system_analysis_report import EnergySystemAnalysisReport
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_retrofit_results import system_results, new_system_results
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
# Specify the output path for the PDF file
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, sra_output_path).export()
|
||||
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
|
||||
ExportsFactory('sra', city, output_path).export()
|
||||
sra_path = (output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, sra_output_path).enrich()
|
||||
pv_feasibility(-73.5681295982132, 45.49218262677643, 0.0001, selected_buildings=city.buildings)
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
solar_angles = CitySolarAngles(city.name,
|
||||
city.latitude,
|
||||
city.longitude,
|
||||
tilt_angle=45,
|
||||
surface_azimuth_angle=180).calculate
|
||||
ResultFactory('sra', city, output_path).enrich()
|
||||
energy_plus_workflow(city)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_systems_percentage)
|
||||
EnergySystemsFactory('montreal_custom', city).enrich()
|
||||
SystemSizing(city.buildings).montreal_custom()
|
||||
current_status_energy_consumption = consumption_data(city)
|
||||
current_status_life_cycle_cost = {}
|
||||
for building in city.buildings:
|
||||
cost_retrofit_scenario = CURRENT_STATUS
|
||||
lcc_dataframe = Cost(building=building,
|
||||
retrofit_scenario=cost_retrofit_scenario,
|
||||
fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle
|
||||
lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_current_status_lcc.csv')
|
||||
current_status_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario)
|
||||
current_system = new_system_results(city.buildings)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
if 'PV' in building.energy_systems_archetype_name:
|
||||
ghi = [x / cte.WATTS_HOUR_TO_JULES for x in building.roofs[0].global_irradiance[cte.HOUR]]
|
||||
pv_sizing_simulation = PVSizingSimulation(building,
|
||||
solar_angles,
|
||||
tilt_angle=45,
|
||||
module_height=1,
|
||||
module_width=2,
|
||||
ghi=ghi)
|
||||
pv_sizing_simulation.pv_output()
|
||||
if building.energy_systems_archetype_name == 'PV+4Pipe+DHW':
|
||||
EnergySystemsSimulationFactory('archetype13', building=building, output_path=simulation_results_path).enrich()
|
||||
retrofitted_energy_consumption = consumption_data(city)
|
||||
retrofitted_life_cycle_cost = {}
|
||||
EnergySystemsSimulationFactory('archetype1', building=building, output_path=output_path).enrich()
|
||||
print(building.energy_consumption_breakdown[cte.ELECTRICITY][cte.COOLING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.HEATING] +
|
||||
building.energy_consumption_breakdown[cte.ELECTRICITY][cte.DOMESTIC_HOT_WATER])
|
||||
new_system = new_system_results(city.buildings)
|
||||
# EnergySystemAnalysisReport(city, output_path).create_report(current_system, new_system)
|
||||
for building in city.buildings:
|
||||
cost_retrofit_scenario = SYSTEM_RETROFIT_AND_PV
|
||||
lcc_dataframe = Cost(building=building,
|
||||
retrofit_scenario=cost_retrofit_scenario,
|
||||
fuel_tariffs=['Electricity-D', 'Gas-Energir']).life_cycle
|
||||
lcc_dataframe.to_csv(cost_analysis_output_path / f'{building.name}_retrofitted_lcc.csv')
|
||||
retrofitted_life_cycle_cost[f'{building.name}'] = cost_data(building, lcc_dataframe, cost_retrofit_scenario)
|
||||
for i in range(12):
|
||||
dhw_consumption = 0
|
||||
for building in city.buildings:
|
||||
dhw_consumption += building.domestic_hot_water_consumption[cte.MONTH][i] / 3.6e6
|
||||
|
||||
|
||||
costs = Cost(building=building, retrofit_scenario=SYSTEM_RETROFIT_AND_PV).life_cycle
|
||||
costs.to_csv(output_path / f'{building.name}_lcc.csv')
|
||||
(costs.loc['global_operational_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].
|
||||
to_csv(output_path / f'{building.name}_op.csv'))
|
||||
costs.loc['global_capital_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_cc.csv')
|
||||
costs.loc['global_maintenance_costs', f'Scenario {SYSTEM_RETROFIT_AND_PV}'].to_csv(
|
||||
output_path / f'{building.name}_m.csv')
|
|
@ -48,7 +48,7 @@ class MontrealNewCatalog(Catalog):
|
|||
construction = float(archetype['incomes']['subsidies']['construction']['#text'])
|
||||
hvac = float(archetype['incomes']['subsidies']['hvac']['#text'])
|
||||
photovoltaic_system = float(archetype['incomes']['subsidies']['photovoltaic']['#text'])
|
||||
electricity_exports = float(archetype['incomes']['electricity_export']['#text'])
|
||||
electricity_exports = float(archetype['incomes']['electricity_export']['#text']) / 1000 / 3600
|
||||
reduction_tax = float(archetype['incomes']['tax_reduction']['#text']) / 100
|
||||
income = Income(construction_subsidy=construction,
|
||||
hvac_subsidy=hvac,
|
||||
|
|
|
@ -10,7 +10,7 @@ class EmissionSystem:
|
|||
"""
|
||||
Emission system class
|
||||
"""
|
||||
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=0):
|
||||
def __init__(self, system_id, model_name=None, system_type=None, parasitic_energy_consumption=None):
|
||||
|
||||
self._system_id = system_id
|
||||
self._model_name = model_name
|
||||
|
|
|
@ -135,7 +135,7 @@ class MontrealCustomCatalog(Catalog):
|
|||
equipment_id = float(equipment['@id'])
|
||||
equipment_type = equipment['@type']
|
||||
model_name = equipment['name']
|
||||
parasitic_consumption = 0
|
||||
parasitic_consumption = None
|
||||
if 'parasitic_consumption' in equipment:
|
||||
parasitic_consumption = float(equipment['parasitic_consumption']['#text']) / 100
|
||||
|
||||
|
|
|
@ -262,7 +262,7 @@ class MontrealFutureSystemCatalogue(Catalog):
|
|||
system_id = None
|
||||
model_name = None
|
||||
system_type = None
|
||||
parasitic_energy_consumption = 0
|
||||
parasitic_energy_consumption = None
|
||||
emission_system = EmissionSystem(system_id=system_id,
|
||||
model_name=model_name,
|
||||
system_type=system_type,
|
||||
|
|
|
@ -484,7 +484,7 @@ class Building(CityObject):
|
|||
monthly_values = PeakLoads().peak_loads_from_hourly(self.domestic_hot_water_heat_demand[cte.HOUR])
|
||||
if monthly_values is None:
|
||||
return None
|
||||
results[cte.MONTH] = [x / cte.WATTS_HOUR_TO_JULES for x in monthly_values]
|
||||
results[cte.MONTH] = [x for x in monthly_values]
|
||||
results[cte.YEAR] = [max(monthly_values) / cte.WATTS_HOUR_TO_JULES]
|
||||
return results
|
||||
|
||||
|
@ -810,15 +810,38 @@ class Building(CityObject):
|
|||
Get total electricity produced onsite in J
|
||||
return: dict
|
||||
"""
|
||||
return self._onsite_electrical_production
|
||||
orientation_losses_factor = {cte.MONTH: {'north': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'east': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'south': [2.137931, 1.645503, 1.320946, 1.107817, 0.993213, 0.945175,
|
||||
0.967949, 1.065534, 1.24183, 1.486486, 1.918033, 2.210526],
|
||||
'west': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]},
|
||||
cte.YEAR: {'north': [0],
|
||||
'east': [0],
|
||||
'south': [1.212544],
|
||||
'west': [0]}
|
||||
}
|
||||
|
||||
@onsite_electrical_production.setter
|
||||
def onsite_electrical_production(self, value):
|
||||
"""
|
||||
set onsite electrical production from external pv simulations
|
||||
:return:
|
||||
"""
|
||||
self._onsite_electrical_production = value
|
||||
# Add other systems whenever new ones appear
|
||||
if self.energy_systems is None:
|
||||
return self._onsite_electrical_production
|
||||
for energy_system in self.energy_systems:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
if generation_system.electricity_efficiency is not None:
|
||||
_efficiency = float(generation_system.electricity_efficiency)
|
||||
else:
|
||||
_efficiency = 0
|
||||
self._onsite_electrical_production = {}
|
||||
for _key in self.roofs[0].global_irradiance.keys():
|
||||
_results = [0 for _ in range(0, len(self.roofs[0].global_irradiance[_key]))]
|
||||
for surface in self.roofs:
|
||||
if _key in orientation_losses_factor:
|
||||
_results = [x + y * _efficiency * surface.perimeter_area
|
||||
* surface.solar_collectors_area_reduction_factor * z
|
||||
for x, y, z in zip(_results, surface.global_irradiance[_key],
|
||||
orientation_losses_factor[_key]['south'])]
|
||||
self._onsite_electrical_production[_key] = _results
|
||||
return self._onsite_electrical_production
|
||||
|
||||
@property
|
||||
def lower_corner(self):
|
||||
|
@ -890,3 +913,10 @@ class Building(CityObject):
|
|||
self._fuel_consumption_breakdown = fuel_breakdown
|
||||
return self._fuel_consumption_breakdown
|
||||
|
||||
@property
|
||||
def pv_generation(self) -> dict:
|
||||
return self._pv_generation
|
||||
|
||||
@pv_generation.setter
|
||||
def pv_generation(self, value):
|
||||
self._pv_generation = value
|
||||
|
|
|
@ -13,7 +13,7 @@ class EmissionSystem:
|
|||
def __init__(self):
|
||||
self._model_name = None
|
||||
self._type = None
|
||||
self._parasitic_energy_consumption = 0
|
||||
self._parasitic_energy_consumption = None
|
||||
|
||||
@property
|
||||
def model_name(self):
|
||||
|
|
|
@ -187,7 +187,7 @@
|
|||
<hvac cost_unit="%">1.5</hvac>
|
||||
<photovoltaic cost_unit="%">3.6</photovoltaic>
|
||||
</subsidies>
|
||||
<electricity_export cost_unit="currency/kWh">0.075</electricity_export>
|
||||
<electricity_export cost_unit="currency/kWh">0.07</electricity_export>
|
||||
<tax_reduction cost_unit="%">5</tax_reduction>
|
||||
</incomes>
|
||||
</archetype>
|
||||
|
|
|
@ -927,7 +927,7 @@
|
|||
<dependant_variable>COP</dependant_variable>
|
||||
<parameters>source_temperature</parameters>
|
||||
<parameters>supply_temperature</parameters>
|
||||
<coefficients a="1.039924" b="0.014600" c="0.000006" d="-0.05026" e="0.000635" f="-0.000154"/>
|
||||
<coefficients a="-0.000277" b="0.019639" c="0.000004" d="0.012190" e="-0.00010" f="-0.000277"/>
|
||||
</heat_efficiency_curve>
|
||||
<cooling_output_curve/>
|
||||
<cooling_fuel_consumption_curve/>
|
||||
|
@ -1052,7 +1052,7 @@
|
|||
<nominal_heat_output/>
|
||||
<minimum_heat_output/>
|
||||
<maximum_heat_output/>
|
||||
<heat_efficiency>3.2</heat_efficiency>
|
||||
<heat_efficiency>3.5</heat_efficiency>
|
||||
<reversible/>
|
||||
<fuel_type>electricity</fuel_type>
|
||||
<source_medium>Air</source_medium>
|
||||
|
@ -1076,7 +1076,7 @@
|
|||
<dependant_variable>COP</dependant_variable>
|
||||
<parameters>source_temperature</parameters>
|
||||
<parameters>supply_temperature</parameters>
|
||||
<coefficients a="1.19713" b="0.077849" c="-0.0000016" d="-0.02675" e="0.000296" f="-0.00112"/>
|
||||
<coefficients a="1.990668" b="0" c="0" d="-0.027252" e="0.000131" f="0"/>
|
||||
</heat_efficiency_curve>
|
||||
<cooling_output_curve/>
|
||||
<cooling_fuel_consumption_curve/>
|
||||
|
@ -1438,29 +1438,6 @@
|
|||
<generation_id>27</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
<system>
|
||||
<id>11</id>
|
||||
<name>Central Heating System َASHP Gas-Boiler TES</name>
|
||||
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
|
||||
<demands>
|
||||
<demand>heating</demand>
|
||||
</demands>
|
||||
<components>
|
||||
<generation_id>23</generation_id>
|
||||
<generation_id>16</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
<system>
|
||||
<id>12</id>
|
||||
<name>Unitary ASHP Cooling System</name>
|
||||
<schema>schemas/ASHP+TES+GasBoiler.jpg</schema>
|
||||
<demands>
|
||||
<demand>cooling</demand>
|
||||
</demands>
|
||||
<components>
|
||||
<generation_id>23</generation_id>
|
||||
</components>
|
||||
</system>
|
||||
</systems>
|
||||
|
||||
<system_archetypes>
|
||||
|
@ -1551,23 +1528,6 @@
|
|||
<system_id>10</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
<system_archetype id="14">
|
||||
<name>Central Heating+Unitary Cooling+Unitary DHW</name>
|
||||
<systems>
|
||||
<system_id>10</system_id>
|
||||
<system_id>11</system_id>
|
||||
<system_id>12</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
<system_archetype id="15">
|
||||
<name>Central Heating+Unitary Cooling+Unitary DHW+PV</name>
|
||||
<systems>
|
||||
<system_id>7</system_id>
|
||||
<system_id>10</system_id>
|
||||
<system_id>11</system_id>
|
||||
<system_id>12</system_id>
|
||||
</systems>
|
||||
</system_archetype>
|
||||
</system_archetypes>
|
||||
</EnergySystemCatalog>
|
||||
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 78 KiB |
|
@ -32,21 +32,10 @@ class NrcanPhysicsParameters:
|
|||
city = self._city
|
||||
nrcan_catalog = ConstructionCatalogFactory('nrcan').catalog
|
||||
for building in city.buildings:
|
||||
main_function = None
|
||||
functions = building.function.split('_')
|
||||
if len(functions) > 1:
|
||||
maximum_percentage = 0
|
||||
for function in functions:
|
||||
percentage_and_function = function.split('-')
|
||||
if float(percentage_and_function[0]) > maximum_percentage:
|
||||
maximum_percentage = float(percentage_and_function[0])
|
||||
main_function = percentage_and_function[-1]
|
||||
else:
|
||||
main_function = functions[-1]
|
||||
if main_function not in Dictionaries().hub_function_to_nrcan_construction_function:
|
||||
logging.error('Building %s has an unknown building function %s', building.name, main_function)
|
||||
if building.function not in Dictionaries().hub_function_to_nrcan_construction_function:
|
||||
logging.error('Building %s has an unknown building function %s', building.name, building.function)
|
||||
continue
|
||||
function = Dictionaries().hub_function_to_nrcan_construction_function[main_function]
|
||||
function = Dictionaries().hub_function_to_nrcan_construction_function[building.function]
|
||||
try:
|
||||
archetype = self._search_archetype(nrcan_catalog, function, building.year_of_construction, self._climate_zone)
|
||||
|
||||
|
|
|
@ -136,14 +136,10 @@ class MontrealCustomEnergySystemParameters:
|
|||
_distribution_system.distribution_consumption_variable_flow = \
|
||||
archetype_distribution_system.distribution_consumption_variable_flow
|
||||
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
|
||||
_generic_emission_system = None
|
||||
_emission_system = None
|
||||
if archetype_distribution_system.emission_systems is not None:
|
||||
_emission_systems = []
|
||||
for emission_system in archetype_distribution_system.emission_systems:
|
||||
_generic_emission_system = EmissionSystem()
|
||||
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
|
||||
_emission_systems.append(_generic_emission_system)
|
||||
_distribution_system.emission_systems = _emission_systems
|
||||
_emission_system = EmissionSystem()
|
||||
_distribution_system.emission_systems = [_emission_system]
|
||||
_distribution_systems.append(_distribution_system)
|
||||
return _distribution_systems
|
||||
|
||||
|
|
|
@ -185,14 +185,10 @@ class MontrealFutureEnergySystemParameters:
|
|||
_distribution_system.distribution_consumption_variable_flow = \
|
||||
archetype_distribution_system.distribution_consumption_variable_flow
|
||||
_distribution_system.heat_losses = archetype_distribution_system.heat_losses
|
||||
_generic_emission_system = None
|
||||
_emission_system = None
|
||||
if archetype_distribution_system.emission_systems is not None:
|
||||
_emission_systems = []
|
||||
for emission_system in archetype_distribution_system.emission_systems:
|
||||
_generic_emission_system = EmissionSystem()
|
||||
_generic_emission_system.parasitic_energy_consumption = emission_system.parasitic_energy_consumption
|
||||
_emission_systems.append(_generic_emission_system)
|
||||
_distribution_system.emission_systems = _emission_systems
|
||||
_emission_system = EmissionSystem()
|
||||
_distribution_system.emission_systems = [_emission_system]
|
||||
_distribution_systems.append(_distribution_system)
|
||||
return _distribution_systems
|
||||
|
||||
|
|
|
@ -127,27 +127,6 @@ class Geojson:
|
|||
function = None
|
||||
if self._function_field is not None:
|
||||
function = str(feature['properties'][self._function_field])
|
||||
if function == 'Mixed use' or function == 'mixed use':
|
||||
function_parts = []
|
||||
if 'usages' in feature['properties']:
|
||||
usages = feature['properties']['usages']
|
||||
for usage in usages:
|
||||
if self._function_to_hub is not None and usage['usage'] in self._function_to_hub:
|
||||
function_parts.append(f"{usage['percentage']}-{self._function_to_hub[usage['usage']]}")
|
||||
else:
|
||||
function_parts.append(f"{usage['percentage']}-{usage['usage']}")
|
||||
else:
|
||||
for key, value in feature['properties'].items():
|
||||
if key.startswith("mixed_type_") and not key.endswith("_percentage"):
|
||||
type_key = key
|
||||
percentage_key = f"{key}_percentage"
|
||||
if percentage_key in feature['properties']:
|
||||
if self._function_to_hub is not None and feature['properties'][type_key] in self._function_to_hub:
|
||||
usage_function = self._function_to_hub[feature['properties'][type_key]]
|
||||
function_parts.append(f"{feature['properties'][percentage_key]}-{usage_function}")
|
||||
else:
|
||||
function_parts.append(f"{feature['properties'][percentage_key]}-{feature['properties'][type_key]}")
|
||||
function = "_".join(function_parts)
|
||||
if self._function_to_hub is not None:
|
||||
# use the transformation dictionary to retrieve the proper function
|
||||
if function in self._function_to_hub:
|
||||
|
|
|
@ -35,60 +35,29 @@ class ComnetUsageParameters:
|
|||
city = self._city
|
||||
comnet_catalog = UsageCatalogFactory('comnet').catalog
|
||||
for building in city.buildings:
|
||||
usages = []
|
||||
comnet_archetype_usages = []
|
||||
building_functions = building.function.split('_')
|
||||
for function in building_functions:
|
||||
usages.append(function.split('-'))
|
||||
for usage in usages:
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
comnet_archetype_usages.append(comnet_archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
for (i, internal_zone) in enumerate(building.internal_zones):
|
||||
internal_zone_usages = []
|
||||
if len(building.internal_zones) > 1:
|
||||
volume_per_area = 0
|
||||
if internal_zone.area is None:
|
||||
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.volume is None:
|
||||
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
if internal_zone.area <= 0:
|
||||
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
continue
|
||||
volume_per_area += internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usages[i][-1]
|
||||
self._assign_values(usage, comnet_archetype_usages[i], volume_per_area, building.cold_water_temperature)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[i])
|
||||
internal_zone_usages.append(usage)
|
||||
else:
|
||||
if building.storeys_above_ground is None:
|
||||
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
|
||||
building.name, usages)
|
||||
continue
|
||||
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
|
||||
for (j, mixed_usage) in enumerate(usages):
|
||||
usage = Usage()
|
||||
usage.name = mixed_usage[-1]
|
||||
if len(usages) > 1:
|
||||
usage.percentage = float(mixed_usage[0]) / 100
|
||||
else:
|
||||
usage.percentage = 1
|
||||
self._assign_values(usage, comnet_archetype_usages[j], volume_per_area, building.cold_water_temperature)
|
||||
self._calculate_reduced_values_from_extended_library(usage, comnet_archetype_usages[j])
|
||||
internal_zone_usages.append(usage)
|
||||
usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(comnet_catalog, usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
|
||||
for internal_zone in building.internal_zones:
|
||||
if internal_zone.area is None:
|
||||
raise TypeError('Internal zone area not defined, ACH cannot be calculated')
|
||||
if internal_zone.volume is None:
|
||||
raise TypeError('Internal zone volume not defined, ACH cannot be calculated')
|
||||
if internal_zone.area <= 0:
|
||||
raise TypeError('Internal zone area is zero, ACH cannot be calculated')
|
||||
volume_per_area = internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usage_name
|
||||
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
|
||||
|
||||
internal_zone.usages = [usage]
|
||||
|
||||
internal_zone.usages = internal_zone_usages
|
||||
@staticmethod
|
||||
def _search_archetypes(comnet_catalog, usage_name):
|
||||
comnet_archetypes = comnet_catalog.entries('archetypes').usages
|
||||
|
|
|
@ -33,72 +33,53 @@ class NrcanUsageParameters:
|
|||
city = self._city
|
||||
nrcan_catalog = UsageCatalogFactory('nrcan').catalog
|
||||
comnet_catalog = UsageCatalogFactory('comnet').catalog
|
||||
for building in city.buildings:
|
||||
usages = []
|
||||
nrcan_archetype_usages = []
|
||||
comnet_archetype_usages = []
|
||||
building_functions = building.function.split('_')
|
||||
for function in building_functions:
|
||||
usages.append(function.split('-'))
|
||||
for usage in usages:
|
||||
usage_name = Dictionaries().hub_usage_to_nrcan_usage[usage[-1]]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name)
|
||||
nrcan_archetype_usages.append(archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[usage[-1]]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
comnet_archetype_usages.append(comnet_archetype_usage)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
|
||||
for (i, internal_zone) in enumerate(building.internal_zones):
|
||||
internal_zone_usages = []
|
||||
for building in city.buildings:
|
||||
usage_name = Dictionaries().hub_usage_to_nrcan_usage[building.function]
|
||||
try:
|
||||
archetype_usage = self._search_archetypes(nrcan_catalog, usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, usage_name)
|
||||
continue
|
||||
|
||||
comnet_usage_name = Dictionaries().hub_usage_to_comnet_usage[building.function]
|
||||
try:
|
||||
comnet_archetype_usage = self._search_archetypes(comnet_catalog, comnet_usage_name)
|
||||
except KeyError:
|
||||
logging.error('Building %s has unknown usage archetype for usage %s', building.name, comnet_usage_name)
|
||||
continue
|
||||
|
||||
for internal_zone in building.internal_zones:
|
||||
if len(building.internal_zones) > 1:
|
||||
volume_per_area = 0
|
||||
if internal_zone.area is None:
|
||||
logging.error('Building %s has internal zone area not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
building.name, usage_name)
|
||||
continue
|
||||
if internal_zone.volume is None:
|
||||
logging.error('Building %s has internal zone volume not defined, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
building.name, usage_name)
|
||||
continue
|
||||
if internal_zone.area <= 0:
|
||||
logging.error('Building %s has internal zone area equal to 0, ACH cannot be calculated for usage %s',
|
||||
building.name, usages[i][-1])
|
||||
building.name, usage_name)
|
||||
continue
|
||||
volume_per_area += internal_zone.volume / internal_zone.area
|
||||
usage = Usage()
|
||||
usage.name = usages[i][-1]
|
||||
self._assign_values(usage, nrcan_archetype_usages[i], volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usages[i], nrcan_archetype_usages[i].occupancy.occupancy_density)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[i])
|
||||
internal_zone_usages.append(usage)
|
||||
else:
|
||||
if building.storeys_above_ground is None:
|
||||
logging.error('Building %s no number of storeys assigned, ACH cannot be calculated for usage %s',
|
||||
building.name, usages)
|
||||
building.name, usage_name)
|
||||
continue
|
||||
volume_per_area = building.volume / building.floor_area / building.storeys_above_ground
|
||||
for (j, mixed_usage) in enumerate(usages):
|
||||
usage = Usage()
|
||||
usage.name = mixed_usage[-1]
|
||||
if len(usages) > 1:
|
||||
usage.percentage = float(mixed_usage[0]) / 100
|
||||
else:
|
||||
usage.percentage = 1
|
||||
self._assign_values(usage, nrcan_archetype_usages[j], volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usages[j], nrcan_archetype_usages[j].occupancy.occupancy_density)
|
||||
self._calculate_reduced_values_from_extended_library(usage, nrcan_archetype_usages[j])
|
||||
internal_zone_usages.append(usage)
|
||||
|
||||
internal_zone.usages = internal_zone_usages
|
||||
usage = Usage()
|
||||
usage.name = usage_name
|
||||
self._assign_values(usage, archetype_usage, volume_per_area, building.cold_water_temperature)
|
||||
self._assign_comnet_extra_values(usage, comnet_archetype_usage, archetype_usage.occupancy.occupancy_density)
|
||||
usage.percentage = 1
|
||||
self._calculate_reduced_values_from_extended_library(usage, archetype_usage)
|
||||
|
||||
internal_zone.usages = [usage]
|
||||
|
||||
@staticmethod
|
||||
def _search_archetypes(catalog, usage_name):
|
||||
|
|
|
@ -1,863 +0,0 @@
|
|||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
],
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
],
|
||||
[
|
||||
-73.5677794213865,
|
||||
45.49262188364245
|
||||
],
|
||||
[
|
||||
-73.56781916241786,
|
||||
45.49258006136105
|
||||
],
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173347,
|
||||
"properties": {
|
||||
"name": "01044617",
|
||||
"address": "rue Victor-Hugo (MTL) 1666",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
],
|
||||
[
|
||||
-73.56761436875776,
|
||||
45.49259744179384
|
||||
],
|
||||
[
|
||||
-73.5676075694645,
|
||||
45.49260454199484
|
||||
],
|
||||
[
|
||||
-73.56773226889548,
|
||||
45.49266394156485
|
||||
],
|
||||
[
|
||||
-73.56773726906921,
|
||||
45.49266624130272
|
||||
],
|
||||
[
|
||||
-73.5677794213865,
|
||||
45.49262188364245
|
||||
],
|
||||
[
|
||||
-73.56765050367694,
|
||||
45.492560280202284
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173348,
|
||||
"properties": {
|
||||
"name": "01044619",
|
||||
"address": "rue Victor-Hugo (MTL) 1670",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56829026835214,
|
||||
45.492524742569145
|
||||
],
|
||||
[
|
||||
-73.56849646900322,
|
||||
45.49262354174874
|
||||
],
|
||||
[
|
||||
-73.56861067001111,
|
||||
45.492505541343576
|
||||
],
|
||||
[
|
||||
-73.56864076915663,
|
||||
45.492519941474434
|
||||
],
|
||||
[
|
||||
-73.56866246900178,
|
||||
45.49249754209202
|
||||
],
|
||||
[
|
||||
-73.56867696946317,
|
||||
45.49250454136644
|
||||
],
|
||||
[
|
||||
-73.56867726964143,
|
||||
45.49250414255471
|
||||
],
|
||||
[
|
||||
-73.56881486931461,
|
||||
45.492362042624144
|
||||
],
|
||||
[
|
||||
-73.56881686903772,
|
||||
45.492359941181455
|
||||
],
|
||||
[
|
||||
-73.5688004699483,
|
||||
45.49235084193039
|
||||
],
|
||||
[
|
||||
-73.56882097012145,
|
||||
45.4923320417195
|
||||
],
|
||||
[
|
||||
-73.56879846891101,
|
||||
45.49232034109352
|
||||
],
|
||||
[
|
||||
-73.56883736970825,
|
||||
45.492284841271946
|
||||
],
|
||||
[
|
||||
-73.56886806888434,
|
||||
45.492256240993704
|
||||
],
|
||||
[
|
||||
-73.56885337003277,
|
||||
45.49224914198001
|
||||
],
|
||||
[
|
||||
-73.56890226932418,
|
||||
45.49219894164121
|
||||
],
|
||||
[
|
||||
-73.56851866897392,
|
||||
45.49201434154299
|
||||
],
|
||||
[
|
||||
-73.56837326884313,
|
||||
45.492163841620254
|
||||
],
|
||||
[
|
||||
-73.56864696910176,
|
||||
45.49229554163243
|
||||
],
|
||||
[
|
||||
-73.5685268682051,
|
||||
45.49241904187041
|
||||
],
|
||||
[
|
||||
-73.56825396962694,
|
||||
45.49228824183907
|
||||
],
|
||||
[
|
||||
-73.56810906858335,
|
||||
45.49243794104013
|
||||
],
|
||||
[
|
||||
-73.56829026835214,
|
||||
45.492524742569145
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 173403,
|
||||
"properties": {
|
||||
"name": "01044334",
|
||||
"address": "rue Saint-Jacques (MTL) 1460",
|
||||
"function": "1000",
|
||||
"height": 15,
|
||||
"year_of_construction": 1985
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.5683896684674,
|
||||
45.491800342137736
|
||||
],
|
||||
[
|
||||
-73.56838616878639,
|
||||
45.49180414157881
|
||||
],
|
||||
[
|
||||
-73.56850686988925,
|
||||
45.49185994152571
|
||||
],
|
||||
[
|
||||
-73.56851286844197,
|
||||
45.4918626410622
|
||||
],
|
||||
[
|
||||
-73.56855549071014,
|
||||
45.49181750806087
|
||||
],
|
||||
[
|
||||
-73.56842962331187,
|
||||
45.49175738300567
|
||||
],
|
||||
[
|
||||
-73.5683896684674,
|
||||
45.491800342137736
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 174898,
|
||||
"properties": {
|
||||
"name": "01044590",
|
||||
"address": "rue Victor-Hugo (MTL) 1600",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.5680637695714,
|
||||
45.49212884162544
|
||||
],
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
],
|
||||
[
|
||||
-73.56815668696326,
|
||||
45.49223626189717
|
||||
],
|
||||
[
|
||||
-73.56815766959974,
|
||||
45.49223524178655
|
||||
],
|
||||
[
|
||||
-73.56818746886172,
|
||||
45.49224944155107
|
||||
],
|
||||
[
|
||||
-73.56822816806918,
|
||||
45.49220694186927
|
||||
],
|
||||
[
|
||||
-73.5680637695714,
|
||||
45.49212884162544
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 175785,
|
||||
"properties": {
|
||||
"name": "01044602",
|
||||
"address": "rue Victor-Hugo (MTL) 1630",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56850793693103,
|
||||
45.49167318076048
|
||||
],
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
],
|
||||
[
|
||||
-73.56859506290321,
|
||||
45.491775605518725
|
||||
],
|
||||
[
|
||||
-73.56863463503653,
|
||||
45.491733702062774
|
||||
],
|
||||
[
|
||||
-73.56850793693103,
|
||||
45.49167318076048
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 175910,
|
||||
"properties": {
|
||||
"name": "01044586",
|
||||
"address": "rue Victor-Hugo (MTL) 1590",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
],
|
||||
[
|
||||
-73.56813497596143,
|
||||
45.49205532773507
|
||||
],
|
||||
[
|
||||
-73.56826745951075,
|
||||
45.492118613912375
|
||||
],
|
||||
[
|
||||
-73.56830763251781,
|
||||
45.49207699906335
|
||||
],
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176056,
|
||||
"properties": {
|
||||
"name": "01044599",
|
||||
"address": "rue Victor-Hugo (MTL) 1620",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56772876855176,
|
||||
45.49247194194522
|
||||
],
|
||||
[
|
||||
-73.56773406949068,
|
||||
45.492474341387755
|
||||
],
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
],
|
||||
[
|
||||
-73.56785890467093,
|
||||
45.492538239964624
|
||||
],
|
||||
[
|
||||
-73.56789966910456,
|
||||
45.49249534173201
|
||||
],
|
||||
[
|
||||
-73.56776616865103,
|
||||
45.49243264153464
|
||||
],
|
||||
[
|
||||
-73.56772876855176,
|
||||
45.49247194194522
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176261,
|
||||
"properties": {
|
||||
"name": "01044613",
|
||||
"address": "rue Victor-Hugo (MTL) 1656",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
],
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
],
|
||||
[
|
||||
-73.56811660206223,
|
||||
45.49227791893211
|
||||
],
|
||||
[
|
||||
-73.56815668696326,
|
||||
45.49223626189717
|
||||
],
|
||||
[
|
||||
-73.56802228176146,
|
||||
45.49217205619571
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176293,
|
||||
"properties": {
|
||||
"name": "01044604",
|
||||
"address": "rue Victor-Hugo (MTL) 1636",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
],
|
||||
[
|
||||
-73.56785996900595,
|
||||
45.49234104192853
|
||||
],
|
||||
[
|
||||
-73.56799446861396,
|
||||
45.49240484193282
|
||||
],
|
||||
[
|
||||
-73.56803643080562,
|
||||
45.49236123475947
|
||||
],
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176296,
|
||||
"properties": {
|
||||
"name": "01044611",
|
||||
"address": "rue Victor-Hugo (MTL) 1650",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
],
|
||||
[
|
||||
-73.56794223597048,
|
||||
45.4922554321734
|
||||
],
|
||||
[
|
||||
-73.56807651582375,
|
||||
45.49231957685336
|
||||
],
|
||||
[
|
||||
-73.56811660206223,
|
||||
45.49227791893211
|
||||
],
|
||||
[
|
||||
-73.56798225825526,
|
||||
45.492213743742184
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176298,
|
||||
"properties": {
|
||||
"name": "01044607",
|
||||
"address": "rue Victor-Hugo (MTL) 1640",
|
||||
"function": "1000",
|
||||
"height": 12,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56742736898599,
|
||||
45.49184704208998
|
||||
],
|
||||
[
|
||||
-73.56761256873325,
|
||||
45.491896142437554
|
||||
],
|
||||
[
|
||||
-73.56766926915839,
|
||||
45.4917902412014
|
||||
],
|
||||
[
|
||||
-73.56766956853903,
|
||||
45.49179024192391
|
||||
],
|
||||
[
|
||||
-73.56792966911675,
|
||||
45.49183254222432
|
||||
],
|
||||
[
|
||||
-73.56793006788594,
|
||||
45.491831141828406
|
||||
],
|
||||
[
|
||||
-73.56794526884076,
|
||||
45.49174634219527
|
||||
],
|
||||
[
|
||||
-73.56794516904765,
|
||||
45.49174634225465
|
||||
],
|
||||
[
|
||||
-73.56753896905731,
|
||||
45.491638642248425
|
||||
],
|
||||
[
|
||||
-73.56742736898599,
|
||||
45.49184704208998
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 176918,
|
||||
"properties": {
|
||||
"name": "01097185",
|
||||
"address": "rue Victor-Hugo (MTL) 1591",
|
||||
"function": "1000",
|
||||
"height": 10,
|
||||
"year_of_construction": 1987
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
],
|
||||
[
|
||||
-73.56769087843276,
|
||||
45.49251875903776
|
||||
],
|
||||
[
|
||||
-73.56781916241786,
|
||||
45.49258006136105
|
||||
],
|
||||
[
|
||||
-73.56785890467093,
|
||||
45.492538239964624
|
||||
],
|
||||
[
|
||||
-73.56773125185198,
|
||||
45.492477239659124
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 178164,
|
||||
"properties": {
|
||||
"name": "01044615",
|
||||
"address": "rue Victor-Hugo (MTL) 1660",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
],
|
||||
[
|
||||
-73.56842962331187,
|
||||
45.49175738300567
|
||||
],
|
||||
[
|
||||
-73.56855549071014,
|
||||
45.49181750806087
|
||||
],
|
||||
[
|
||||
-73.56859506290321,
|
||||
45.491775605518725
|
||||
],
|
||||
[
|
||||
-73.56846877951091,
|
||||
45.4917152818903
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179679,
|
||||
"properties": {
|
||||
"name": "01044588",
|
||||
"address": "rue Victor-Hugo (MTL) 1596",
|
||||
"function": "1000",
|
||||
"height": 9,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
],
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
],
|
||||
[
|
||||
-73.5683477837006,
|
||||
45.4920353716151
|
||||
],
|
||||
[
|
||||
-73.56838787594006,
|
||||
45.49199371809223
|
||||
],
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179789,
|
||||
"properties": {
|
||||
"name": "01044595",
|
||||
"address": "rue Victor-Hugo (MTL) 1610",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
],
|
||||
[
|
||||
-73.56817543449134,
|
||||
45.49201384773851
|
||||
],
|
||||
[
|
||||
-73.56830763251781,
|
||||
45.49207699906335
|
||||
],
|
||||
[
|
||||
-73.5683477837006,
|
||||
45.4920353716151
|
||||
],
|
||||
[
|
||||
-73.56821589168355,
|
||||
45.491972368627906
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 181310,
|
||||
"properties": {
|
||||
"name": "01044597",
|
||||
"address": "rue Victor-Hugo (MTL) 1616",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56809506939487,
|
||||
45.49209624228538
|
||||
],
|
||||
[
|
||||
-73.56809246893268,
|
||||
45.4920988416879
|
||||
],
|
||||
[
|
||||
-73.56821287000538,
|
||||
45.49216124158406
|
||||
],
|
||||
[
|
||||
-73.56822186852654,
|
||||
45.49216584161625
|
||||
],
|
||||
[
|
||||
-73.56826745951075,
|
||||
45.492118613912375
|
||||
],
|
||||
[
|
||||
-73.56813497596143,
|
||||
45.49205532773507
|
||||
],
|
||||
[
|
||||
-73.56809506939487,
|
||||
45.49209624228538
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182393,
|
||||
"properties": {
|
||||
"name": "01044601",
|
||||
"address": "rue Victor-Hugo (MTL) 1626",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56790756893894,
|
||||
45.492291541967774
|
||||
],
|
||||
[
|
||||
-73.56790222258577,
|
||||
45.49229712328457
|
||||
],
|
||||
[
|
||||
-73.56803643080562,
|
||||
45.49236123475947
|
||||
],
|
||||
[
|
||||
-73.56807651582375,
|
||||
45.49231957685336
|
||||
],
|
||||
[
|
||||
-73.56794223597048,
|
||||
45.4922554321734
|
||||
],
|
||||
[
|
||||
-73.56790756893894,
|
||||
45.492291541967774
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182442,
|
||||
"properties": {
|
||||
"name": "01044609",
|
||||
"address": "rue Victor-Hugo (MTL) 1646",
|
||||
"function": "1000",
|
||||
"height": 11,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.56829706912258,
|
||||
45.49188914205178
|
||||
],
|
||||
[
|
||||
-73.56825635009473,
|
||||
45.49193088860213
|
||||
],
|
||||
[
|
||||
-73.56838787594006,
|
||||
45.49199371809223
|
||||
],
|
||||
[
|
||||
-73.56842846901456,
|
||||
45.49195154234486
|
||||
],
|
||||
[
|
||||
-73.56829706912258,
|
||||
45.49188914205178
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 182546,
|
||||
"properties": {
|
||||
"name": "01044592",
|
||||
"address": "rue Victor-Hugo (MTL) 1606",
|
||||
"function": "1000",
|
||||
"height": 8,
|
||||
"year_of_construction": 1986
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,55 +0,0 @@
|
|||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
],
|
||||
[
|
||||
-73.57962787855432,
|
||||
45.496524875557746
|
||||
],
|
||||
[
|
||||
-73.57996357265695,
|
||||
45.49668114195629
|
||||
],
|
||||
[
|
||||
-73.57996427397713,
|
||||
45.496680342403664
|
||||
],
|
||||
[
|
||||
-73.58034707390021,
|
||||
45.49625804233725
|
||||
],
|
||||
[
|
||||
-73.58034697395713,
|
||||
45.496257942524835
|
||||
],
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179764,
|
||||
"properties": {
|
||||
"name": "01119274",
|
||||
"address": "rue Guy (MTL) 2157",
|
||||
"function": "Mixed use",
|
||||
"mixed_type_1": "commercial",
|
||||
"mixed_type_1_percentage": 50,
|
||||
"mixed_type_2": "6000",
|
||||
"mixed_type_2_percentage": 50,
|
||||
"height": 62,
|
||||
"year_of_construction": 1954
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,52 +0,0 @@
|
|||
{
|
||||
"type": "FeatureCollection",
|
||||
"features": [
|
||||
{
|
||||
"type": "Feature",
|
||||
"geometry": {
|
||||
"type": "Polygon",
|
||||
"coordinates": [
|
||||
[
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
],
|
||||
[
|
||||
-73.57962787855432,
|
||||
45.496524875557746
|
||||
],
|
||||
[
|
||||
-73.57996357265695,
|
||||
45.49668114195629
|
||||
],
|
||||
[
|
||||
-73.57996427397713,
|
||||
45.496680342403664
|
||||
],
|
||||
[
|
||||
-73.58034707390021,
|
||||
45.49625804233725
|
||||
],
|
||||
[
|
||||
-73.58034697395713,
|
||||
45.496257942524835
|
||||
],
|
||||
[
|
||||
-73.58000127109773,
|
||||
45.49613461675315
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"id": 179764,
|
||||
"properties": {
|
||||
"name": "01119274",
|
||||
"address": "rue Guy (MTL) 2157",
|
||||
"function": "Mixed use",
|
||||
"usages": [{"usage": "commercial", "percentage": 50}, {"usage": "6000", "percentage": 50}],
|
||||
"height": 62,
|
||||
"year_of_construction": 1954
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
108
main.py
108
main.py
|
@ -1,86 +1,48 @@
|
|||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.district_heating_network.simultinity_factor import DemandShiftProcessor
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
from scripts.district_heating_network.road_processor import road_processor
|
||||
from scripts.district_heating_network.district_heating_network_creator import DistrictHeatingNetworkCreator
|
||||
from scripts.district_heating_network.geojson_graph_creator import networkx_to_geojson
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
# Specify the GeoJSON file path
|
||||
data = {}
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
# geojson_file = process_geojson(x=-73.58001358793511, y=45.496445294438715, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'test_geojson1.geojson'
|
||||
|
||||
file_path = (Path(__file__).parent / 'input_files' / 'output_buildings.geojson')
|
||||
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
|
||||
# Create city object from GeoJSON file
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
# ConstructionFactory('nrcan', city).enrich()
|
||||
# UsageFactory('nrcan', city).enrich()
|
||||
# WeatherFactory('epw', city).enrich()
|
||||
# energy_plus_workflow(city, energy_plus_output_path)
|
||||
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
# city.buildings[0].function = cte.COMMERCIAL
|
||||
# ConstructionFactory('nrcan', city).enrich()
|
||||
# UsageFactory('nrcan', city).enrich()
|
||||
# energy_plus_workflow(city, energy_plus_output_path)
|
||||
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
# city.buildings[0].function = cte.MEDIUM_OFFICE
|
||||
# ConstructionFactory('nrcan', city).enrich()
|
||||
# UsageFactory('nrcan', city).enrich()
|
||||
# energy_plus_workflow(city, energy_plus_output_path)
|
||||
# data[f'{city.buildings[0].function}'] = city.buildings[0].heating_demand[cte.YEAR][0] / 3.6e9
|
||||
# categories = list(data.keys())
|
||||
# values = list(data.values())
|
||||
# # Plotting
|
||||
# fig, ax = plt.subplots(figsize=(10, 6), dpi=96)
|
||||
# fig.suptitle('Impact of different usages on yearly heating demand', fontsize=16, weight='bold', alpha=.8)
|
||||
# ax.bar(categories, values, color=['#2196f3', '#ff5a5f', '#4caf50'], width=0.6, zorder=2)
|
||||
# ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
# ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
# ax.set_xlabel('Building Type', fontsize=12, labelpad=10)
|
||||
# ax.set_ylabel('Energy Consumption (MWh)', fontsize=14, labelpad=10)
|
||||
# ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
|
||||
# ax.set_xticks(np.arange(len(categories)))
|
||||
# ax.set_xticklabels(categories, rotation=45, ha='right')
|
||||
# ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=0)
|
||||
# ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
# ax.spines['right'].set_linewidth(1.1)
|
||||
# # Set a white background
|
||||
# fig.patch.set_facecolor('white')
|
||||
# # Adjust the margins around the plot area
|
||||
# plt.subplots_adjust(left=0.1, right=0.9, top=0.85, bottom=0.25)
|
||||
# # Save the plot
|
||||
# plt.savefig('plot_nrcan.png', bbox_inches='tight')
|
||||
# plt.close()
|
||||
print('test')
|
||||
|
||||
# Enrich city data
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
|
||||
energy_plus_workflow(city)
|
||||
|
||||
processor = DemandShiftProcessor(city)
|
||||
processor.process_demands()
|
||||
|
||||
location = [45.43658024628209, -73.66134636914408]
|
||||
|
||||
roads_file = road_processor(location[1], location[0], 0.002)
|
||||
|
||||
dhn_creator = DistrictHeatingNetworkCreator(file_path, roads_file)
|
||||
network_graph = dhn_creator.run()
|
||||
|
||||
networkx_to_geojson(network_graph)
|
||||
|
||||
dhn_creator.plot_network_graph()
|
||||
|
||||
print("Simultaneity Factor Heating:", city.simultaneity_factor_heating)
|
||||
print("Simultaneity Factor Cooling:", city.simultaneity_factor_cooling)
|
BIN
plot_nrcan.png
BIN
plot_nrcan.png
Binary file not shown.
Before Width: | Height: | Size: 46 KiB |
|
@ -13,7 +13,7 @@ from hub.city_model_structure.building import Building
|
|||
import hub.helpers.constants as cte
|
||||
from scripts.costs.configuration import Configuration
|
||||
from scripts.costs.constants import (SKIN_RETROFIT, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
|
||||
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT)
|
||||
SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV)
|
||||
from scripts.costs.cost_base import CostBase
|
||||
|
||||
|
||||
|
@ -32,12 +32,10 @@ class CapitalCosts(CostBase):
|
|||
'B3010_opaque_roof',
|
||||
'B1010_superstructure',
|
||||
'D2010_photovoltaic_system',
|
||||
'D3020_simultaneous_heat_and_cooling_generating_systems',
|
||||
'D3030_heating_systems',
|
||||
'D3040_cooling_systems',
|
||||
'D3050_distribution_systems',
|
||||
'D3060_other_hvac_ahu',
|
||||
'D3070_storage_systems',
|
||||
'D3020_heat_and_cooling_generating_systems',
|
||||
'D3040_distribution_systems',
|
||||
'D3050_other_hvac_ahu',
|
||||
'D3060_storage_systems',
|
||||
'D40_dhw',
|
||||
],
|
||||
dtype='float'
|
||||
|
@ -47,12 +45,10 @@ class CapitalCosts(CostBase):
|
|||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'B1010_superstructure'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3060_other_hvac_ahu'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_and_cooling_generating_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3080_other_hvac_ahu'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D3060_storage_systems'] = 0
|
||||
self._yearly_capital_costs.loc[0, 'D40_dhw'] = 0
|
||||
|
||||
self._yearly_capital_incomes = pd.DataFrame(
|
||||
|
@ -111,7 +107,7 @@ class CapitalCosts(CostBase):
|
|||
capital_cost_transparent = surface_transparent * chapter.item('B2020_transparent').refurbishment[0]
|
||||
capital_cost_roof = surface_roof * chapter.item('B3010_opaque_roof').refurbishment[0]
|
||||
capital_cost_ground = surface_ground * chapter.item('B1010_superstructure').refurbishment[0]
|
||||
if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV, SYSTEM_RETROFIT):
|
||||
if self._configuration.retrofit_scenario not in (SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS, PV):
|
||||
self._yearly_capital_costs.loc[0, 'B2010_opaque_walls'] = capital_cost_opaque * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B2020_transparent'] = capital_cost_transparent * self._own_capital
|
||||
self._yearly_capital_costs.loc[0, 'B3010_opaque_roof'] = capital_cost_roof * self._own_capital
|
||||
|
@ -155,20 +151,14 @@ class CapitalCosts(CostBase):
|
|||
chapter = self._capital_costs_chapter.chapter('D_services')
|
||||
system_components, component_categories, component_sizes = self.system_components()
|
||||
capital_cost_heating_and_cooling_equipment = 0
|
||||
capital_cost_heating_equipment = 0
|
||||
capital_cost_cooling_equipment = 0
|
||||
capital_cost_domestic_hot_water_equipment = 0
|
||||
capital_cost_energy_storage_equipment = 0
|
||||
capital_cost_distribution_equipment = 0
|
||||
capital_cost_lighting = 0
|
||||
capital_cost_pv = self._surface_pv * chapter.item('D2010_photovoltaic_system').initial_investment[0]
|
||||
for (i, component) in enumerate(system_components):
|
||||
if component_categories[i] == 'multi_generation':
|
||||
if component_categories[i] == 'generation':
|
||||
capital_cost_heating_and_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'heating':
|
||||
capital_cost_heating_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'cooling':
|
||||
capital_cost_cooling_equipment += chapter.item(component).initial_investment[0] * component_sizes[i]
|
||||
elif component_categories[i] == 'dhw':
|
||||
capital_cost_domestic_hot_water_equipment += chapter.item(component).initial_investment[0] * \
|
||||
component_sizes[i]
|
||||
|
@ -180,25 +170,19 @@ class CapitalCosts(CostBase):
|
|||
|
||||
if self._configuration.retrofit_scenario in (SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, PV):
|
||||
self._yearly_capital_costs.loc[0, 'D2010_photovoltaic_system'] = capital_cost_pv
|
||||
if (self._configuration.retrofit_scenario in
|
||||
(SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT)):
|
||||
self._yearly_capital_costs.loc[0, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
||||
if self._configuration.retrofit_scenario in (SYSTEM_RETROFIT_AND_PV, SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV):
|
||||
self._yearly_capital_costs.loc[0, 'D3020_heat_and_cooling_generating_systems'] = (
|
||||
capital_cost_heating_and_cooling_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3030_heating_systems'] = (
|
||||
capital_cost_heating_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3040_cooling_systems'] = (
|
||||
capital_cost_cooling_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3050_distribution_systems'] = (
|
||||
self._yearly_capital_costs.loc[0, 'D3040_distribution_systems'] = (
|
||||
capital_cost_distribution_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D3070_storage_systems'] = (
|
||||
self._yearly_capital_costs.loc[0, 'D3060_storage_systems'] = (
|
||||
capital_cost_energy_storage_equipment * self._own_capital)
|
||||
self._yearly_capital_costs.loc[0, 'D40_dhw'] = (
|
||||
capital_cost_domestic_hot_water_equipment * self._own_capital)
|
||||
capital_cost_hvac = (capital_cost_heating_and_cooling_equipment + capital_cost_distribution_equipment +
|
||||
capital_cost_energy_storage_equipment + capital_cost_domestic_hot_water_equipment)
|
||||
return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_heating_equipment,
|
||||
capital_cost_distribution_equipment, capital_cost_cooling_equipment, capital_cost_energy_storage_equipment,
|
||||
capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
|
||||
return (capital_cost_pv, capital_cost_heating_and_cooling_equipment, capital_cost_distribution_equipment,
|
||||
capital_cost_energy_storage_equipment, capital_cost_domestic_hot_water_equipment, capital_cost_lighting, capital_cost_hvac)
|
||||
|
||||
def yearly_energy_system_costs(self):
|
||||
chapter = self._capital_costs_chapter.chapter('D_services')
|
||||
|
@ -218,79 +202,49 @@ class CapitalCosts(CostBase):
|
|||
system_investment_costs[0] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[1] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[2] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D3060_storage_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[3] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] = (
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[4] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[5] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] = (
|
||||
-npf.pmt(
|
||||
self._configuration.interest_rate,
|
||||
self._configuration.credit_years,
|
||||
system_investment_costs[6] * self._configuration.percentage_credit
|
||||
)
|
||||
)
|
||||
if self._configuration.retrofit_scenario not in (SKIN_RETROFIT, PV):
|
||||
for (i, component) in enumerate(system_components):
|
||||
if (year % chapter.item(component).lifetime) == 0 and year != (self._configuration.number_of_years - 1):
|
||||
if component_categories[i] == 'multi_generation':
|
||||
reposition_cost_heating_and_cooling_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3020_simultaneous_heat_and_cooling_generating_systems'] += (
|
||||
reposition_cost_heating_and_cooling_equipment)
|
||||
elif component_categories[i] == 'heating':
|
||||
reposition_cost_heating_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3030_heating_systems'] += (
|
||||
reposition_cost_heating_equipment)
|
||||
elif component_categories[i] == 'cooling':
|
||||
reposition_cost_cooling_equipment = (chapter.item(component).reposition[0] *
|
||||
component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3040_cooling_systems'] += (
|
||||
reposition_cost_cooling_equipment)
|
||||
if component_categories[i] == 'generation':
|
||||
reposition_cost_heating_and_cooling_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3020_heat_and_cooling_generating_systems'] += reposition_cost_heating_and_cooling_equipment
|
||||
elif component_categories[i] == 'dhw':
|
||||
reposition_cost_domestic_hot_water_equipment = (
|
||||
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
||||
reposition_cost_domestic_hot_water_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D40_dhw'] += reposition_cost_domestic_hot_water_equipment
|
||||
elif component_categories[i] == 'distribution':
|
||||
reposition_cost_distribution_equipment = (
|
||||
chapter.item(component).reposition[0] * component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3050_distribution_systems'] += (
|
||||
reposition_cost_distribution_equipment)
|
||||
reposition_cost_distribution_equipment = chapter.item(component).reposition[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3040_distribution_systems'] += reposition_cost_distribution_equipment
|
||||
else:
|
||||
reposition_cost_energy_storage_equipment = (
|
||||
chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase)
|
||||
self._yearly_capital_costs.loc[year, 'D3070_storage_systems'] += reposition_cost_energy_storage_equipment
|
||||
reposition_cost_energy_storage_equipment = chapter.item(component).initial_investment[0] * component_sizes[i] * costs_increase
|
||||
self._yearly_capital_costs.loc[year, 'D3060_storage_systems'] += reposition_cost_energy_storage_equipment
|
||||
if self._configuration.retrofit_scenario == CURRENT_STATUS and pv:
|
||||
if (year % chapter.item('D2010_photovoltaic_system').lifetime) == 0:
|
||||
self._yearly_capital_costs.loc[year, 'D2010_photovoltaic_system'] += (
|
||||
|
@ -326,11 +280,8 @@ class CapitalCosts(CostBase):
|
|||
system_components.append(self.boiler_type(generation_system))
|
||||
else:
|
||||
system_components.append('D302010_template_heat')
|
||||
elif cte.HEATING in demand_types:
|
||||
if cte.COOLING in demand_types and generation_system.fuel_type == cte.ELECTRICITY:
|
||||
component_categories.append('multi_generation')
|
||||
else:
|
||||
component_categories.append('heating')
|
||||
elif cte.HEATING or cte.COOLING in demand_types:
|
||||
component_categories.append('generation')
|
||||
sizes.append(installed_capacity)
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
item_type = self.heat_pump_type(generation_system)
|
||||
|
@ -339,18 +290,11 @@ class CapitalCosts(CostBase):
|
|||
item_type = self.boiler_type(generation_system)
|
||||
system_components.append(item_type)
|
||||
else:
|
||||
if cooling_capacity > heating_capacity:
|
||||
if cte.COOLING in demand_types and cte.HEATING not in demand_types:
|
||||
system_components.append('D302090_template_cooling')
|
||||
else:
|
||||
system_components.append('D302010_template_heat')
|
||||
elif cte.COOLING in demand_types:
|
||||
component_categories.append('cooling')
|
||||
sizes.append(installed_capacity)
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
item_type = self.heat_pump_type(generation_system)
|
||||
system_components.append(item_type)
|
||||
else:
|
||||
system_components.append('D302090_template_cooling')
|
||||
|
||||
if generation_system.energy_storage_systems is not None:
|
||||
energy_storage_systems = generation_system.energy_storage_systems
|
||||
for storage_system in energy_storage_systems:
|
||||
|
|
|
@ -12,12 +12,10 @@ SKIN_RETROFIT = 1
|
|||
SYSTEM_RETROFIT_AND_PV = 2
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV = 3
|
||||
PV = 4
|
||||
SYSTEM_RETROFIT = 5
|
||||
RETROFITTING_SCENARIOS = [
|
||||
CURRENT_STATUS,
|
||||
SKIN_RETROFIT,
|
||||
SYSTEM_RETROFIT_AND_PV,
|
||||
SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV,
|
||||
PV,
|
||||
SYSTEM_RETROFIT
|
||||
PV
|
||||
]
|
||||
|
|
|
@ -93,12 +93,10 @@ class Cost:
|
|||
global_capital_costs['B1010_superstructure']
|
||||
)
|
||||
df_capital_costs_systems = (
|
||||
global_capital_costs['D3020_simultaneous_heat_and_cooling_generating_systems'] +
|
||||
global_capital_costs['D3030_heating_systems'] +
|
||||
global_capital_costs['D3040_cooling_systems'] +
|
||||
global_capital_costs['D3050_distribution_systems'] +
|
||||
global_capital_costs['D3060_other_hvac_ahu'] +
|
||||
global_capital_costs['D3070_storage_systems'] +
|
||||
global_capital_costs['D3020_heat_and_cooling_generating_systems'] +
|
||||
global_capital_costs['D3040_distribution_systems'] +
|
||||
global_capital_costs['D3050_other_hvac_ahu'] +
|
||||
global_capital_costs['D3060_storage_systems'] +
|
||||
global_capital_costs['D40_dhw'] +
|
||||
global_capital_costs['D2010_photovoltaic_system']
|
||||
)
|
||||
|
|
|
@ -57,15 +57,14 @@ class TotalMaintenanceCosts(CostBase):
|
|||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
else:
|
||||
cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
cooling_equipments['air_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.GROUND:
|
||||
cooling_equipments['ground_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
elif generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.WATER:
|
||||
cooling_equipments['water_source_heat_pump'] = generation_system.nominal_cooling_output / 1000
|
||||
else:
|
||||
cooling_equipments['general_cooling_equipment'] = generation_system.nominal_cooling_output / 1000
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and generation_system.source_medium == cte.AIR:
|
||||
|
|
|
@ -196,7 +196,7 @@ class TotalOperationalCosts(CostBase):
|
|||
if cooling is not None:
|
||||
hourly += cooling[i] / 3600
|
||||
if dhw is not None:
|
||||
hourly += dhw[i] / 3600
|
||||
dhw += dhw[i] / 3600
|
||||
hourly_fuel_consumption.append(hourly)
|
||||
else:
|
||||
heating = None
|
||||
|
|
|
@ -33,12 +33,14 @@ class TotalOperationalIncomes(CostBase):
|
|||
onsite_electricity_production = 0
|
||||
else:
|
||||
onsite_electricity_production = building.onsite_electrical_production[cte.YEAR][0]
|
||||
|
||||
for year in range(1, self._configuration.number_of_years + 1):
|
||||
price_increase_electricity = math.pow(1 + self._configuration.electricity_price_index, year)
|
||||
price_export = archetype.income.electricity_export # to account for unit change
|
||||
# todo: check the adequate assignation of price. Pilar
|
||||
price_export = archetype.income.electricity_export * cte.WATTS_HOUR_TO_JULES * 1000 # to account for unit change
|
||||
self._yearly_operational_incomes.loc[year, 'Incomes electricity'] = (
|
||||
(onsite_electricity_production / 3.6e6) * price_export * price_increase_electricity
|
||||
onsite_electricity_production * price_export * price_increase_electricity
|
||||
)
|
||||
|
||||
self._yearly_operational_incomes.fillna(0, inplace=True)
|
||||
return self._yearly_operational_incomes
|
||||
return self._yearly_operational_incomes
|
||||
|
|
338
scripts/energy_system_analysis_report.py
Normal file
338
scripts/energy_system_analysis_report.py
Normal file
|
@ -0,0 +1,338 @@
|
|||
import os
|
||||
import hub.helpers.constants as cte
|
||||
import matplotlib.pyplot as plt
|
||||
import random
|
||||
import matplotlib.colors as mcolors
|
||||
from matplotlib import cm
|
||||
from scripts.report_creation import LatexReport
|
||||
|
||||
class EnergySystemAnalysisReport:
|
||||
def __init__(self, city, output_path):
|
||||
self.city = city
|
||||
self.output_path = output_path
|
||||
self.content = []
|
||||
self.report = LatexReport('energy_system_analysis_report.tex')
|
||||
|
||||
def building_energy_info(self):
|
||||
|
||||
table_data = [
|
||||
["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
|
||||
"Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
|
||||
]
|
||||
intensity_table_data = [["Building Name", "Total Floor Area m2", "Heating Demand Intensity kWh/m2",
|
||||
"Cooling Demand Intensity kWh/m2", "Electricity Intensity kWh/m2"]]
|
||||
|
||||
for building in self.city.buildings:
|
||||
total_floor_area = 0
|
||||
for zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += zone.total_floor_area
|
||||
building_data = [
|
||||
building.name,
|
||||
str(building.year_of_construction),
|
||||
building.function,
|
||||
str(format(building.heating_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0])
|
||||
/ 1e6, '.2f')),
|
||||
]
|
||||
intensity_data = [
|
||||
building.name,
|
||||
str(format(total_floor_area, '.2f')),
|
||||
str(format(building.heating_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(1e3 * total_floor_area), '.2f'))
|
||||
]
|
||||
table_data.append(building_data)
|
||||
intensity_table_data.append(intensity_data)
|
||||
|
||||
self.report.add_table(table_data, caption='City Buildings Energy Demands')
|
||||
self.report.add_table(intensity_table_data, caption='Energy Intensity Information')
|
||||
|
||||
def base_case_charts(self):
|
||||
save_directory = self.output_path
|
||||
|
||||
def autolabel(bars, ax):
|
||||
for bar in bars:
|
||||
height = bar.get_height()
|
||||
ax.annotate('{:.1f}'.format(height),
|
||||
xy=(bar.get_x() + bar.get_width() / 2, height),
|
||||
xytext=(0, 3), # 3 points vertical offset
|
||||
textcoords="offset points",
|
||||
ha='center', va='bottom')
|
||||
|
||||
def create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand):
|
||||
fig, ax = plt.subplots()
|
||||
bar_width = 0.35
|
||||
index = range(len(building_names))
|
||||
|
||||
bars1 = ax.bar(index, yearly_heating_demand, bar_width, label='Yearly Heating Demand (MWh)')
|
||||
bars2 = ax.bar([i + bar_width for i in index], yearly_cooling_demand, bar_width,
|
||||
label='Yearly Cooling Demand (MWh)')
|
||||
|
||||
ax.set_xlabel('Building Name')
|
||||
ax.set_ylabel('Energy Demand (MWh)')
|
||||
ax.set_title('Yearly HVAC Demands')
|
||||
ax.set_xticks([i + bar_width / 2 for i in index])
|
||||
ax.set_xticklabels(building_names, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
autolabel(bars1, ax)
|
||||
autolabel(bars2, ax)
|
||||
fig.tight_layout()
|
||||
plt.savefig(save_directory / 'hvac_demand_chart.jpg')
|
||||
plt.close()
|
||||
|
||||
def create_bar_chart(title, ylabel, data, filename, bar_color=None):
|
||||
fig, ax = plt.subplots()
|
||||
bar_width = 0.35
|
||||
index = range(len(building_names))
|
||||
|
||||
if bar_color is None:
|
||||
# Generate a random color
|
||||
bar_color = random.choice(list(mcolors.CSS4_COLORS.values()))
|
||||
|
||||
bars = ax.bar(index, data, bar_width, label=ylabel, color=bar_color)
|
||||
|
||||
ax.set_xlabel('Building Name')
|
||||
ax.set_ylabel('Energy Demand (MWh)')
|
||||
ax.set_title(title)
|
||||
ax.set_xticks([i + bar_width / 2 for i in index])
|
||||
ax.set_xticklabels(building_names, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
autolabel(bars, ax)
|
||||
fig.tight_layout()
|
||||
plt.savefig(save_directory / filename)
|
||||
plt.close()
|
||||
|
||||
building_names = [building.name for building in self.city.buildings]
|
||||
yearly_heating_demand = [building.heating_demand[cte.YEAR][0] / 3.6e9 for building in self.city.buildings]
|
||||
yearly_cooling_demand = [building.cooling_demand[cte.YEAR][0] / 3.6e9 for building in self.city.buildings]
|
||||
yearly_dhw_demand = [building.domestic_hot_water_heat_demand[cte.YEAR][0] / 1e6 for building in
|
||||
self.city.buildings]
|
||||
yearly_electricity_demand = [(building.lighting_electrical_demand[cte.YEAR][0] +
|
||||
building.appliances_electrical_demand[cte.YEAR][0]) / 1e6 for building in
|
||||
self.city.buildings]
|
||||
|
||||
create_hvac_demand_chart(building_names, yearly_heating_demand, yearly_cooling_demand)
|
||||
create_bar_chart('Yearly DHW Demands', 'Energy Demand (MWh)', yearly_dhw_demand, 'dhw_demand_chart.jpg', )
|
||||
create_bar_chart('Yearly Electricity Demands', 'Energy Demand (MWh)', yearly_electricity_demand,
|
||||
'electricity_demand_chart.jpg')
|
||||
|
||||
def maximum_monthly_hvac_chart(self):
|
||||
save_directory = self.output_path
|
||||
months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October',
|
||||
'November', 'December']
|
||||
for building in self.city.buildings:
|
||||
maximum_monthly_heating_load = []
|
||||
maximum_monthly_cooling_load = []
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6)) # Create a figure with 2 subplots side by side
|
||||
for demand in building.heating_peak_load[cte.MONTH]:
|
||||
maximum_monthly_heating_load.append(demand / 3.6e6)
|
||||
for demand in building.cooling_peak_load[cte.MONTH]:
|
||||
maximum_monthly_cooling_load.append(demand / 3.6e6)
|
||||
|
||||
# Plot maximum monthly heating load
|
||||
axs[0].bar(months, maximum_monthly_heating_load, color='red') # Plot on the first subplot
|
||||
axs[0].set_title('Maximum Monthly Heating Load')
|
||||
axs[0].set_xlabel('Month')
|
||||
axs[0].set_ylabel('Load (kWh)')
|
||||
axs[0].tick_params(axis='x', rotation=45)
|
||||
|
||||
# Plot maximum monthly cooling load
|
||||
axs[1].bar(months, maximum_monthly_cooling_load, color='blue') # Plot on the second subplot
|
||||
axs[1].set_title('Maximum Monthly Cooling Load')
|
||||
axs[1].set_xlabel('Month')
|
||||
axs[1].set_ylabel('Load (kWh)')
|
||||
axs[1].tick_params(axis='x', rotation=45)
|
||||
|
||||
plt.tight_layout() # Adjust layout to prevent overlapping
|
||||
plt.savefig(save_directory / f'{building.name}_monthly_maximum_hvac_loads.jpg')
|
||||
plt.close()
|
||||
|
||||
def load_duration_curves(self):
|
||||
save_directory = self.output_path
|
||||
for building in self.city.buildings:
|
||||
heating_demand = [demand / 3.6e6 for demand in building.heating_demand[cte.HOUR]]
|
||||
cooling_demand = [demand / 3.6e6 for demand in building.cooling_demand[cte.HOUR]]
|
||||
heating_demand_sorted = sorted(heating_demand, reverse=True)
|
||||
cooling_demand_sorted = sorted(cooling_demand, reverse=True)
|
||||
|
||||
plt.style.use('ggplot')
|
||||
|
||||
# Create figure and axis objects with 1 row and 2 columns
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
|
||||
|
||||
# Plot sorted heating demand
|
||||
axs[0].plot(heating_demand_sorted, color='red', linewidth=2, label='Heating Demand')
|
||||
axs[0].set_xlabel('Hour', fontsize=14)
|
||||
axs[0].set_ylabel('Heating Demand (kWh)', fontsize=14)
|
||||
axs[0].set_title('Heating Load Duration Curve', fontsize=16)
|
||||
axs[0].grid(True)
|
||||
axs[0].legend(loc='upper right', fontsize=12)
|
||||
|
||||
# Plot sorted cooling demand
|
||||
axs[1].plot(cooling_demand_sorted, color='blue', linewidth=2, label='Cooling Demand')
|
||||
axs[1].set_xlabel('Hour', fontsize=14)
|
||||
axs[1].set_ylabel('Cooling Demand (kWh)', fontsize=14)
|
||||
axs[1].set_title('Cooling Load Duration Curve', fontsize=16)
|
||||
axs[1].grid(True)
|
||||
axs[1].legend(loc='upper right', fontsize=12)
|
||||
|
||||
# Adjust layout
|
||||
plt.tight_layout()
|
||||
plt.savefig(save_directory / f'{building.name}_load_duration_curve.jpg')
|
||||
plt.close()
|
||||
|
||||
def individual_building_info(self, building):
|
||||
table_data = [
|
||||
["Maximum Monthly HVAC Demands",
|
||||
f"\\includegraphics[width=1\\linewidth]{{{building.name}_monthly_maximum_hvac_loads.jpg}}"],
|
||||
["Load Duration Curve", f"\\includegraphics[width=1\\linewidth]{{{building.name}_load_duration_curve.jpg}}"],
|
||||
]
|
||||
|
||||
self.report.add_table(table_data, caption=f'{building.name} Information', first_column_width=1.5)
|
||||
|
||||
def building_system_retrofit_results(self, building_name, current_system, new_system):
|
||||
current_system_archetype = current_system[f'{building_name}']['Energy System Archetype']
|
||||
current_system_heating = current_system[f'{building_name}']['Heating Equipments']
|
||||
current_system_cooling = current_system[f'{building_name}']['Cooling Equipments']
|
||||
current_system_dhw = current_system[f'{building_name}']['DHW Equipments']
|
||||
current_system_pv = current_system[f'{building_name}']['Photovoltaic System Capacity']
|
||||
current_system_heating_fuel = current_system[f'{building_name}']['Heating Fuel']
|
||||
current_system_hvac_consumption = current_system[f'{building_name}']['Yearly HVAC Energy Consumption (MWh)']
|
||||
current_system_dhw_consumption = current_system[f'{building_name}']['DHW Energy Consumption (MWH)']
|
||||
current_pv_production = current_system[f'{building_name}']['PV Yearly Production (kWh)']
|
||||
current_capital_cost = current_system[f'{building_name}']['Energy System Capital Cost (CAD)']
|
||||
current_operational = current_system[f'{building_name}']['Energy System Average Yearly Operational Cost (CAD)']
|
||||
current_lcc = current_system[f'{building_name}']['Energy System Life Cycle Cost (CAD)']
|
||||
new_system_archetype = new_system[f'{building_name}']['Energy System Archetype']
|
||||
new_system_heating = new_system[f'{building_name}']['Heating Equipments']
|
||||
new_system_cooling = new_system[f'{building_name}']['Cooling Equipments']
|
||||
new_system_dhw = new_system[f'{building_name}']['DHW Equipments']
|
||||
new_system_pv = new_system[f'{building_name}']['Photovoltaic System Capacity']
|
||||
new_system_heating_fuel = new_system[f'{building_name}']['Heating Fuel']
|
||||
new_system_hvac_consumption = new_system[f'{building_name}']['Yearly HVAC Energy Consumption (MWh)']
|
||||
new_system_dhw_consumption = new_system[f'{building_name}']['DHW Energy Consumption (MWH)']
|
||||
new_pv_production = new_system[f'{building_name}']['PV Yearly Production (kWh)']
|
||||
new_capital_cost = new_system[f'{building_name}']['Energy System Capital Cost (CAD)']
|
||||
new_operational = new_system[f'{building_name}']['Energy System Average Yearly Operational Cost (CAD)']
|
||||
new_lcc = new_system[f'{building_name}']['Energy System Life Cycle Cost (CAD)']
|
||||
|
||||
energy_system_table_data = [
|
||||
["Detail", "Existing System", "Proposed System"],
|
||||
["Energy System Archetype", current_system_archetype, new_system_archetype],
|
||||
["Heating Equipments", current_system_heating, new_system_heating],
|
||||
["Cooling Equipments", current_system_cooling, new_system_cooling],
|
||||
["DHW Equipments", current_system_dhw, new_system_dhw],
|
||||
["Photovoltaic System Capacity", current_system_pv, new_system_pv],
|
||||
["Heating Fuel", current_system_heating_fuel, new_system_heating_fuel],
|
||||
["Yearly HVAC Energy Consumption (MWh)", current_system_hvac_consumption, new_system_hvac_consumption],
|
||||
["DHW Energy Consumption (MWH)", current_system_dhw_consumption, new_system_dhw_consumption],
|
||||
["PV Yearly Production (kWh)", current_pv_production, new_pv_production],
|
||||
["Energy System Capital Cost (CAD)", current_capital_cost, new_capital_cost],
|
||||
["Energy System Average Yearly Operational Cost (CAD)", current_operational, new_operational],
|
||||
["Energy System Life Cycle Cost (CAD)", current_lcc, new_lcc]
|
||||
]
|
||||
self.report.add_table(energy_system_table_data, caption=f'Building {building_name} Energy System Characteristics')
|
||||
|
||||
def building_fuel_consumption_breakdown(self, building):
|
||||
save_directory = self.output_path
|
||||
# Initialize variables to store fuel consumption breakdown
|
||||
fuel_breakdown = {
|
||||
"Heating": {"Gas": 0, "Electricity": 0},
|
||||
"Domestic Hot Water": {"Gas": 0, "Electricity": 0},
|
||||
"Cooling": {"Electricity": 0},
|
||||
"Appliance": building.appliances_electrical_demand[cte.YEAR][0] / 1e6,
|
||||
"Lighting": building.lighting_electrical_demand[cte.YEAR][0] / 1e6
|
||||
}
|
||||
|
||||
# Iterate through energy systems of the building
|
||||
for energy_system in building.energy_systems:
|
||||
for demand_type in energy_system.demand_types:
|
||||
if demand_type == cte.HEATING:
|
||||
consumption = building.heating_consumption[cte.YEAR][0] / 3.6e9
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
else:
|
||||
fuel_breakdown[demand_type]["Gas"] += consumption
|
||||
elif demand_type == cte.DOMESTIC_HOT_WATER:
|
||||
consumption = building.domestic_hot_water_consumption[cte.YEAR][0] / 1e6
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
else:
|
||||
fuel_breakdown[demand_type]["Gas"] += consumption
|
||||
elif demand_type == cte.COOLING:
|
||||
consumption = building.cooling_consumption[cte.YEAR][0] / 3.6e9
|
||||
fuel_breakdown[demand_type]["Electricity"] += consumption
|
||||
|
||||
electricity_labels = ['Appliance', 'Lighting']
|
||||
electricity_sizes = [fuel_breakdown['Appliance'], fuel_breakdown['Lighting']]
|
||||
if fuel_breakdown['Heating']['Electricity'] > 0:
|
||||
electricity_labels.append('Heating')
|
||||
electricity_sizes.append(fuel_breakdown['Heating']['Electricity'])
|
||||
if fuel_breakdown['Cooling']['Electricity'] > 0:
|
||||
electricity_labels.append('Cooling')
|
||||
electricity_sizes.append(fuel_breakdown['Cooling']['Electricity'])
|
||||
if fuel_breakdown['Domestic Hot Water']['Electricity'] > 0:
|
||||
electricity_labels.append('Domestic Hot Water')
|
||||
electricity_sizes.append(fuel_breakdown['Domestic Hot Water']['Electricity'])
|
||||
|
||||
# Data for bar chart
|
||||
gas_labels = ['Heating', 'Domestic Hot Water']
|
||||
gas_sizes = [fuel_breakdown['Heating']['Gas'], fuel_breakdown['Domestic Hot Water']['Gas']]
|
||||
|
||||
# Set the style
|
||||
plt.style.use('ggplot')
|
||||
|
||||
# Create plot grid
|
||||
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
|
||||
|
||||
# Plot pie chart for electricity consumption breakdown
|
||||
colors = cm.get_cmap('tab20c', len(electricity_labels))
|
||||
axs[0].pie(electricity_sizes, labels=electricity_labels,
|
||||
autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(electricity_sizes):.2f})",
|
||||
startangle=90, colors=[colors(i) for i in range(len(electricity_labels))])
|
||||
axs[0].set_title('Electricity Consumption Breakdown')
|
||||
|
||||
# Plot bar chart for natural gas consumption breakdown
|
||||
colors = cm.get_cmap('Paired', len(gas_labels))
|
||||
axs[1].bar(gas_labels, gas_sizes, color=[colors(i) for i in range(len(gas_labels))])
|
||||
axs[1].set_ylabel('Consumption (MWh)')
|
||||
axs[1].set_title('Natural Gas Consumption Breakdown')
|
||||
|
||||
# Add grid to bar chart
|
||||
axs[1].grid(axis='y', linestyle='--', alpha=0.7)
|
||||
|
||||
# Add a title to the entire figure
|
||||
plt.suptitle('Building Energy Consumption Breakdown', fontsize=16, fontweight='bold')
|
||||
|
||||
# Adjust layout
|
||||
plt.tight_layout()
|
||||
|
||||
# Save the plot as a high-quality image
|
||||
plt.savefig(save_directory / f'{building.name}_energy_consumption_breakdown.png', dpi=300)
|
||||
plt.close()
|
||||
|
||||
def create_report(self, current_system, new_system):
|
||||
os.chdir(self.output_path)
|
||||
self.report.add_section('Current Status')
|
||||
self.building_energy_info()
|
||||
self.base_case_charts()
|
||||
self.report.add_image('hvac_demand_chart.jpg', caption='Yearly HVAC Demands')
|
||||
self.report.add_image('dhw_demand_chart.jpg', caption='Yearly DHW Demands')
|
||||
self.report.add_image('electricity_demand_chart.jpg', caption='Yearly Electricity Demands')
|
||||
self.maximum_monthly_hvac_chart()
|
||||
self.load_duration_curves()
|
||||
for building in self.city.buildings:
|
||||
self.individual_building_info(building)
|
||||
self.building_system_retrofit_results(building_name=building.name, current_system=current_system, new_system=new_system)
|
||||
self.building_fuel_consumption_breakdown(building)
|
||||
self.report.add_image(f'{building.name}_energy_consumption_breakdown.png',
|
||||
caption=f'Building {building.name} Consumption by source and sector breakdown')
|
||||
self.report.save_report()
|
||||
self.report.compile_to_pdf()
|
|
@ -1,596 +0,0 @@
|
|||
import os
|
||||
import hub.helpers.constants as cte
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from scripts.report_creation import LatexReport
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import glob
|
||||
|
||||
|
||||
class EnergySystemRetrofitReport:
|
||||
def __init__(self, city, output_path, retrofit_scenario, current_status_energy_consumption_data,
|
||||
retrofitted_energy_consumption_data, current_status_lcc_data, retrofitted_lcc_data):
|
||||
self.city = city
|
||||
self.current_status_data = current_status_energy_consumption_data
|
||||
self.retrofitted_data = retrofitted_energy_consumption_data
|
||||
self.current_status_lcc = current_status_lcc_data
|
||||
self.retrofitted_lcc = retrofitted_lcc_data
|
||||
self.output_path = output_path
|
||||
self.content = []
|
||||
self.retrofit_scenario = retrofit_scenario
|
||||
self.report = LatexReport('energy_system_retrofit_report',
|
||||
'Energy System Retrofit Report', self.retrofit_scenario, output_path)
|
||||
self.system_schemas_path = (Path(__file__).parent.parent / 'hub' / 'data' / 'energy_systems' / 'schemas')
|
||||
self.charts_path = Path(output_path) / 'charts'
|
||||
self.charts_path.mkdir(parents=True, exist_ok=True)
|
||||
files = glob.glob(f'{self.charts_path}/*')
|
||||
for file in files:
|
||||
os.remove(file)
|
||||
|
||||
def building_energy_info(self):
|
||||
table_data = [
|
||||
["Building Name", "Year of Construction", "function", "Yearly Heating Demand (MWh)",
|
||||
"Yearly Cooling Demand (MWh)", "Yearly DHW Demand (MWh)", "Yearly Electricity Demand (MWh)"]
|
||||
]
|
||||
intensity_table_data = [["Building Name", "Total Floor Area $m^2$", "Heating Demand Intensity kWh/ $m^2$",
|
||||
"Cooling Demand Intensity kWh/ $m^2$", "Electricity Intensity kWh/ $m^2$"]]
|
||||
peak_load_data = [["Building Name", "Heating Peak Load (kW)", "Cooling Peak Load (kW)",
|
||||
"Domestic Hot Water Peak Load (kW)"]]
|
||||
|
||||
for building in self.city.buildings:
|
||||
total_floor_area = 0
|
||||
for zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += zone.total_floor_area
|
||||
building_data = [
|
||||
building.name,
|
||||
str(building.year_of_construction),
|
||||
building.function,
|
||||
str(format(building.heating_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(building.domestic_hot_water_heat_demand[cte.YEAR][0] / 3.6e9, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0])
|
||||
/ 3.6e9, '.2f')),
|
||||
]
|
||||
intensity_data = [
|
||||
building.name,
|
||||
str(format(total_floor_area, '.2f')),
|
||||
str(format(building.heating_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(building.cooling_demand[cte.YEAR][0] / (3.6e6 * total_floor_area), '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(3.6e6 * total_floor_area), '.2f'))
|
||||
]
|
||||
peak_data = [
|
||||
building.name,
|
||||
str(format(building.heating_peak_load[cte.YEAR][0] / 1000, '.2f')),
|
||||
str(format(building.cooling_peak_load[cte.YEAR][0] / 1000, '.2f')),
|
||||
str(format(
|
||||
(building.lighting_electrical_demand[cte.YEAR][0] + building.appliances_electrical_demand[cte.YEAR][0]) /
|
||||
(3.6e6 * total_floor_area), '.2f'))
|
||||
]
|
||||
table_data.append(building_data)
|
||||
intensity_table_data.append(intensity_data)
|
||||
peak_load_data.append(peak_data)
|
||||
|
||||
self.report.add_table(table_data, caption='Buildings Energy Consumption Data')
|
||||
self.report.add_table(intensity_table_data, caption='Buildings Energy Use Intensity Data')
|
||||
self.report.add_table(peak_load_data, caption='Buildings Peak Load Data')
|
||||
|
||||
def plot_monthly_energy_demands(self, data, file_name, title):
|
||||
# Data preparation
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
demands = {
|
||||
'Heating': ('heating', '#2196f3'),
|
||||
'Cooling': ('cooling', '#ff5a5f'),
|
||||
'DHW': ('dhw', '#4caf50'),
|
||||
'Electricity': ('lighting_appliance', '#ffc107')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_bar_chart(ax, demand_type, color, ylabel, title):
|
||||
values = data[demand_type]
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(4, 1, figsize=(20, 16), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_bar_chart(axs[0], 'heating', demands['Heating'][1], 'Heating Demand (kWh)', 'Monthly Heating Demand')
|
||||
plot_bar_chart(axs[1], 'cooling', demands['Cooling'][1], 'Cooling Demand (kWh)', 'Monthly Cooling Demand')
|
||||
plot_bar_chart(axs[2], 'dhw', demands['DHW'][1], 'DHW Demand (kWh)', 'Monthly DHW Demand')
|
||||
plot_bar_chart(axs[3], 'lighting_appliance', demands['Electricity'][1], 'Electricity Demand (kWh)',
|
||||
'Monthly Electricity Demand')
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def plot_monthly_energy_consumption(self, data, file_name, title):
|
||||
# Data preparation
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
consumptions = {
|
||||
'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
|
||||
'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
|
||||
'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_bar_chart(ax, consumption_type, color, ylabel, title):
|
||||
values = data[consumption_type]
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(3, 1, figsize=(20, 15), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
|
||||
consumptions['Heating'][3])
|
||||
plot_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
|
||||
consumptions['Cooling'][3])
|
||||
plot_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def fuel_consumption_breakdown(self, file_name, data):
|
||||
fuel_consumption_breakdown = {}
|
||||
for building in self.city.buildings:
|
||||
for key, breakdown in data[f'{building.name}']['energy_consumption_breakdown'].items():
|
||||
if key not in fuel_consumption_breakdown:
|
||||
fuel_consumption_breakdown[key] = {sector: 0 for sector in breakdown}
|
||||
for sector, value in breakdown.items():
|
||||
if sector in fuel_consumption_breakdown[key]:
|
||||
fuel_consumption_breakdown[key][sector] += value / 3.6e6
|
||||
else:
|
||||
fuel_consumption_breakdown[key][sector] = value / 3.6e6
|
||||
|
||||
plt.style.use('ggplot')
|
||||
num_keys = len(fuel_consumption_breakdown)
|
||||
fig, axs = plt.subplots(1 if num_keys <= 2 else num_keys, min(num_keys, 2), figsize=(12, 5))
|
||||
axs = axs if num_keys > 1 else [axs] # Ensure axs is always iterable
|
||||
|
||||
for i, (fuel, breakdown) in enumerate(fuel_consumption_breakdown.items()):
|
||||
labels = breakdown.keys()
|
||||
values = breakdown.values()
|
||||
colors = cm.get_cmap('tab20c', len(labels))
|
||||
ax = axs[i] if num_keys > 1 else axs[0]
|
||||
ax.pie(values, labels=labels,
|
||||
autopct=lambda pct: f"{pct:.1f}%\n({pct / 100 * sum(values):.2f})",
|
||||
startangle=90, colors=[colors(j) for j in range(len(labels))])
|
||||
ax.set_title(f'{fuel} Consumption Breakdown')
|
||||
|
||||
plt.suptitle('City Energy Consumption Breakdown', fontsize=16, fontweight='bold')
|
||||
plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust layout to fit the suptitle
|
||||
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, dpi=300)
|
||||
plt.close()
|
||||
return chart_path
|
||||
|
||||
def energy_system_archetype_schematic(self):
|
||||
energy_system_archetypes = {}
|
||||
for building in self.city.buildings:
|
||||
if building.energy_systems_archetype_name not in energy_system_archetypes:
|
||||
energy_system_archetypes[building.energy_systems_archetype_name] = [building.name]
|
||||
else:
|
||||
energy_system_archetypes[building.energy_systems_archetype_name].append(building.name)
|
||||
|
||||
text = ""
|
||||
items = ""
|
||||
for archetype, buildings in energy_system_archetypes.items():
|
||||
buildings_str = ", ".join(buildings)
|
||||
text += f"Figure 4 shows the schematic of the proposed energy system for buildings {buildings_str}.\n"
|
||||
if archetype in ['PV+4Pipe+DHW', 'PV+ASHP+GasBoiler+TES']:
|
||||
text += "This energy system archetype is formed of the following systems: \par"
|
||||
items = ['Rooftop Photovoltaic System: The rooftop PV system is tied to the grid and in case there is surplus '
|
||||
'energy, it is sold to Hydro-Quebec through their Net-Meterin program.',
|
||||
'4-Pipe HVAC System: This systems includes a 4-pipe heat pump capable of generating heat and cooling '
|
||||
'at the same time, a natural gas boiler as the auxiliary heating system, and a hot water storage tank.'
|
||||
'The temperature inside the tank is kept between 40-55 C. The cooling demand is totally supplied by '
|
||||
'the heat pump unit.',
|
||||
'Domestic Hot Water Heat Pump System: This system is in charge of supplying domestic hot water demand.'
|
||||
'The heat pump is connected to a thermal storage tank with electric resistance heating coil inside it.'
|
||||
' The temperature inside the tank should always remain above 60 C.']
|
||||
|
||||
self.report.add_text(text)
|
||||
self.report.add_itemize(items=items)
|
||||
schema_path = self.system_schemas_path / f'{archetype}.jpg'
|
||||
self.report.add_image(str(schema_path).replace('\\', '/'),
|
||||
f'Proposed energy system for buildings {buildings_str}')
|
||||
|
||||
def plot_monthly_radiation(self):
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
monthly_roof_radiation = []
|
||||
for i in range(len(months)):
|
||||
tilted_radiation = 0
|
||||
for building in self.city.buildings:
|
||||
tilted_radiation += (building.roofs[0].global_irradiance_tilted[cte.MONTH][i] /
|
||||
(cte.WATTS_HOUR_TO_JULES * 1000))
|
||||
monthly_roof_radiation.append(tilted_radiation)
|
||||
|
||||
def plot_bar_chart(ax, months, values, color, ylabel, title):
|
||||
ax.bar(months, values, color=color, width=0.6, zorder=2)
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
|
||||
ax.set_xticks(np.arange(len(months)))
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
average_value = np.mean(values)
|
||||
ax.axhline(y=average_value, color='grey', linewidth=2, linestyle='--')
|
||||
ax.text(len(months) - 1, average_value, f'Average = {average_value:.1f} kWh', ha='right', va='bottom',
|
||||
color='grey')
|
||||
|
||||
# Plotting the bar chart
|
||||
fig, ax = plt.subplots(figsize=(15, 8), dpi=96)
|
||||
plot_bar_chart(ax, months, monthly_roof_radiation, '#ffc107', 'Tilted Roof Radiation (kWh / m2)',
|
||||
'Monthly Tilted Roof Radiation')
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.1, right=0.95, top=0.9, bottom=0.1)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / 'monthly_tilted_roof_radiation.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
return chart_path
|
||||
|
||||
def energy_consumption_comparison(self, current_status_data, retrofitted_data, file_name, title):
|
||||
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
||||
consumptions = {
|
||||
'Heating': ('heating', '#2196f3', 'Heating Consumption (kWh)', 'Monthly Energy Consumption for Heating'),
|
||||
'Cooling': ('cooling', '#ff5a5f', 'Cooling Consumption (kWh)', 'Monthly Energy Consumption for Cooling'),
|
||||
'DHW': ('dhw', '#4caf50', 'DHW Consumption (kWh)', 'Monthly DHW Consumption')
|
||||
}
|
||||
|
||||
# Helper function for plotting
|
||||
def plot_double_bar_chart(ax, consumption_type, color, ylabel, title):
|
||||
current_values = current_status_data[consumption_type]
|
||||
retrofitted_values = retrofitted_data[consumption_type]
|
||||
bar_width = 0.35
|
||||
index = np.arange(len(months))
|
||||
|
||||
ax.bar(index, current_values, bar_width, label='Current Status', color=color, alpha=0.7, zorder=2)
|
||||
ax.bar(index + bar_width, retrofitted_values, bar_width, label='Retrofitted', color=color, hatch='/', zorder=2)
|
||||
|
||||
ax.grid(which="major", axis='x', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xlabel('Month', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel(ylabel, fontsize=14, labelpad=10)
|
||||
ax.set_title(title, fontsize=14, weight='bold', alpha=.8, pad=40)
|
||||
ax.set_xticks(index + bar_width / 2)
|
||||
ax.set_xticklabels(months, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
|
||||
# Adding bar labels
|
||||
ax.bar_label(ax.containers[0], padding=3, color='black', fontsize=12, rotation=90)
|
||||
ax.bar_label(ax.containers[1], padding=3, color='black', fontsize=12, rotation=90)
|
||||
|
||||
ax.spines[['top', 'left', 'bottom']].set_visible(False)
|
||||
ax.spines['right'].set_linewidth(1.1)
|
||||
|
||||
# Plotting
|
||||
fig, axs = plt.subplots(3, 1, figsize=(20, 25), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
plot_double_bar_chart(axs[0], 'heating', consumptions['Heating'][1], consumptions['Heating'][2],
|
||||
consumptions['Heating'][3])
|
||||
plot_double_bar_chart(axs[1], 'cooling', consumptions['Cooling'][1], consumptions['Cooling'][2],
|
||||
consumptions['Cooling'][3])
|
||||
plot_double_bar_chart(axs[2], 'dhw', consumptions['DHW'][1], consumptions['DHW'][2], consumptions['DHW'][3])
|
||||
|
||||
# Set a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjust the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=0.3, hspace=0.5)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def yearly_consumption_comparison(self):
|
||||
current_total_consumption = round(self.current_status_data['total_consumption'], 2)
|
||||
retrofitted_total_consumption = round(self.retrofitted_data['total_consumption'], 2)
|
||||
text = (
|
||||
f'The total yearly energy consumption before and after the retrofit are {current_total_consumption} MWh and '
|
||||
f'{retrofitted_total_consumption} MWh, respectively.')
|
||||
if retrofitted_total_consumption < current_total_consumption:
|
||||
change = str(round((current_total_consumption - retrofitted_total_consumption) * 100 / current_total_consumption,
|
||||
2))
|
||||
text += f'Therefore, the total yearly energy consumption decreased by {change} \%.'
|
||||
else:
|
||||
change = str(round((retrofitted_total_consumption - current_total_consumption) * 100 /
|
||||
retrofitted_total_consumption, 2))
|
||||
text += f'Therefore, the total yearly energy consumption increased by {change} \%. \par'
|
||||
self.report.add_text(text)
|
||||
|
||||
def pv_system(self):
|
||||
self.report.add_text('The first step in PV assessments is evaluating the potential of buildings for installing '
|
||||
'rooftop PV system. The benchmark value used for this evaluation is the mean yearly solar '
|
||||
'incident in Montreal. According to Hydro-Quebec, the mean annual incident in Montreal is 1350'
|
||||
'kWh/m2. Therefore, any building with rooftop annual global horizontal radiation of less than '
|
||||
'1080 kWh/m2 is considered to be infeasible. Table 4 shows the yearly horizontal radiation on '
|
||||
'buildings roofs. \par')
|
||||
radiation_data = [
|
||||
["Building Name", "Roof Area $m^2$", "Function", "Rooftop Annual Global Horizontal Radiation kWh/ $m^2$"]
|
||||
]
|
||||
pv_feasible_buildings = []
|
||||
for building in self.city.buildings:
|
||||
if building.roofs[0].global_irradiance[cte.YEAR][0] > 1080:
|
||||
pv_feasible_buildings.append(building.name)
|
||||
data = [building.name, str(format(building.roofs[0].perimeter_area, '.2f')), building.function,
|
||||
str(format(building.roofs[0].global_irradiance[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1000), '.2f'))]
|
||||
radiation_data.append(data)
|
||||
|
||||
self.report.add_table(radiation_data,
|
||||
caption='Buildings Roof Characteristics')
|
||||
|
||||
if len(pv_feasible_buildings) == len(self.city.buildings):
|
||||
buildings_str = 'all'
|
||||
else:
|
||||
buildings_str = ", ".join(pv_feasible_buildings)
|
||||
self.report.add_text(f"From the table it can be seen that {buildings_str} buildings are good candidates to have "
|
||||
f"rooftop PV system. The next step is calculating the amount of solar radiation on a tilted "
|
||||
f"surface. Figure 5 shows the total monthly solar radiation on a surface with the tilt angle "
|
||||
f"of 45 degrees on the roofs of those buildings that are identified to have rooftop PV system."
|
||||
f"\par")
|
||||
tilted_radiation = self.plot_monthly_radiation()
|
||||
self.report.add_image(str(tilted_radiation).replace('\\', '/'),
|
||||
caption='Total Monthly Solar Radiation on Buildings Roofs on a 45 Degrees Tilted Surface',
|
||||
placement='H')
|
||||
self.report.add_text('The first step in sizing the PV system is to find the available roof area. '
|
||||
'Few considerations need to be made here. The considerations include space for maintenance '
|
||||
'crew, space for mechanical equipment, and orientation correction factor to make sure all '
|
||||
'the panel are truly facing south. After all these considerations, the minimum distance '
|
||||
'between the panels to avoid shading throughout the year is found. Table 5 shows the number of'
|
||||
'panles on each buildings roof, yearly PV production, total electricity consumption, and self '
|
||||
'consumption. \par')
|
||||
|
||||
pv_output_table = [['Building Name', 'Total Surface Area of PV Panels ($m^2$)',
|
||||
'Total Solar Incident on PV Modules (MWh)', 'Yearly PV production (MWh)']]
|
||||
|
||||
for building in self.city.buildings:
|
||||
if building.name in pv_feasible_buildings:
|
||||
pv_data = []
|
||||
pv_data.append(building.name)
|
||||
yearly_solar_incident = (building.roofs[0].global_irradiance_tilted[cte.YEAR][0] *
|
||||
building.roofs[0].installed_solar_collector_area) / (cte.WATTS_HOUR_TO_JULES * 1e6)
|
||||
yearly_solar_incident_str = format(yearly_solar_incident, '.2f')
|
||||
yearly_pv_output = building.onsite_electrical_production[cte.YEAR][0] / (cte.WATTS_HOUR_TO_JULES * 1e6)
|
||||
yearly_pv_output_str = format(yearly_pv_output, '.2f')
|
||||
|
||||
pv_data.append(format(building.roofs[0].installed_solar_collector_area, '.2f'))
|
||||
pv_data.append(yearly_solar_incident_str)
|
||||
pv_data.append(yearly_pv_output_str)
|
||||
|
||||
pv_output_table.append(pv_data)
|
||||
|
||||
self.report.add_table(pv_output_table, caption='PV System Simulation Results', first_column_width=3)
|
||||
|
||||
def life_cycle_cost_stacked_bar(self, file_name, title):
|
||||
# Aggregate LCC components for current and retrofitted statuses
|
||||
current_status_capex = 0
|
||||
current_status_opex = 0
|
||||
current_status_maintenance = 0
|
||||
current_status_end_of_life = 0
|
||||
retrofitted_capex = 0
|
||||
retrofitted_opex = 0
|
||||
retrofitted_maintenance = 0
|
||||
retrofitted_end_of_life = 0
|
||||
current_status_operational_income = 0
|
||||
retrofitted_operational_income = 0
|
||||
|
||||
for building in self.city.buildings:
|
||||
current_status_capex += self.current_status_lcc[f'{building.name}']['capital_cost_per_sqm']
|
||||
retrofitted_capex += self.retrofitted_lcc[f'{building.name}']['capital_cost_per_sqm']
|
||||
current_status_opex += self.current_status_lcc[f'{building.name}']['operational_cost_per_sqm']
|
||||
retrofitted_opex += self.retrofitted_lcc[f'{building.name}']['operational_cost_per_sqm']
|
||||
current_status_maintenance += self.current_status_lcc[f'{building.name}']['maintenance_cost_per_sqm']
|
||||
retrofitted_maintenance += self.retrofitted_lcc[f'{building.name}']['maintenance_cost_per_sqm']
|
||||
current_status_end_of_life += self.current_status_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
|
||||
retrofitted_end_of_life += self.retrofitted_lcc[f'{building.name}']['end_of_life_cost_per_sqm']
|
||||
current_status_operational_income += self.current_status_lcc[f'{building.name}']['operational_income_per_sqm']
|
||||
retrofitted_operational_income += self.retrofitted_lcc[f'{building.name}']['operational_income_per_sqm']
|
||||
|
||||
current_status_lcc_components_sqm = {
|
||||
'Capital Cost': current_status_capex / len(self.city.buildings),
|
||||
'Operational Cost': (current_status_opex - current_status_operational_income) / len(self.city.buildings),
|
||||
'Maintenance Cost': current_status_maintenance / len(self.city.buildings),
|
||||
'End of Life Cost': current_status_end_of_life / len(self.city.buildings),
|
||||
}
|
||||
retrofitted_lcc_components_sqm = {
|
||||
'Capital Cost': retrofitted_capex / len(self.city.buildings),
|
||||
'Operational Cost': (retrofitted_opex - retrofitted_operational_income) / len(self.city.buildings),
|
||||
'Maintenance Cost': retrofitted_maintenance / len(self.city.buildings),
|
||||
'End of Life Cost': retrofitted_end_of_life / len(self.city.buildings),
|
||||
}
|
||||
|
||||
labels = ['Current Status', 'Retrofitted Status']
|
||||
categories = ['Capital Cost', 'Operational Cost', 'Maintenance Cost', 'End of Life Cost']
|
||||
colors = ['#2196f3', '#ff5a5f', '#4caf50', '#ffc107'] # Added new color
|
||||
|
||||
# Data preparation
|
||||
bar_width = 0.35
|
||||
r = np.arange(len(labels))
|
||||
|
||||
fig, ax = plt.subplots(figsize=(12, 8), dpi=96)
|
||||
fig.suptitle(title, fontsize=16, weight='bold', alpha=.8)
|
||||
|
||||
# Plotting current status data
|
||||
bottom = np.zeros(len(labels))
|
||||
for category, color in zip(categories, colors):
|
||||
values = [current_status_lcc_components_sqm[category], retrofitted_lcc_components_sqm[category]]
|
||||
ax.bar(r, values, bottom=bottom, color=color, edgecolor='white', width=bar_width, label=category)
|
||||
bottom += values
|
||||
|
||||
# Adding summation annotations at the top of the bars
|
||||
for idx, (x, total) in enumerate(zip(r, bottom)):
|
||||
ax.text(x, total, f'{total:.1f}', ha='center', va='bottom', fontsize=12, fontweight='bold')
|
||||
|
||||
# Adding labels, title, and grid
|
||||
ax.set_xlabel('LCC Components', fontsize=12, labelpad=10)
|
||||
ax.set_ylabel('Average Cost (CAD/m²)', fontsize=14, labelpad=10)
|
||||
ax.grid(which="major", axis='y', color='#DAD8D7', alpha=0.5, zorder=1)
|
||||
ax.set_xticks(r)
|
||||
ax.set_xticklabels(labels, rotation=45, ha='right')
|
||||
ax.legend()
|
||||
|
||||
# Adding a white background
|
||||
fig.patch.set_facecolor('white')
|
||||
|
||||
# Adjusting the margins around the plot area
|
||||
plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.2)
|
||||
|
||||
# Save the plot
|
||||
chart_path = self.charts_path / f'{file_name}.png'
|
||||
plt.savefig(chart_path, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
return chart_path
|
||||
|
||||
def create_report(self):
|
||||
# Add sections and text to the report
|
||||
self.report.add_section('Overview of the Current Status in Buildings')
|
||||
self.report.add_text('In this section, an overview of the current status of buildings characteristics, '
|
||||
'energy demand and consumptions are provided')
|
||||
self.report.add_subsection('Buildings Characteristics')
|
||||
|
||||
self.building_energy_info()
|
||||
|
||||
# current monthly demands and consumptions
|
||||
current_monthly_demands = self.current_status_data['monthly_demands']
|
||||
current_monthly_consumptions = self.current_status_data['monthly_consumptions']
|
||||
|
||||
# Plot and save demand chart
|
||||
current_demand_chart_path = self.plot_monthly_energy_demands(data=current_monthly_demands,
|
||||
file_name='current_monthly_demands',
|
||||
title='Current Status Monthly Energy Demands')
|
||||
# Plot and save consumption chart
|
||||
current_consumption_chart_path = self.plot_monthly_energy_consumption(data=current_monthly_consumptions,
|
||||
file_name='monthly_consumptions',
|
||||
title='Monthly Energy Consumptions')
|
||||
current_consumption_breakdown_path = self.fuel_consumption_breakdown('City_Energy_Consumption_Breakdown',
|
||||
self.current_status_data)
|
||||
retrofitted_consumption_breakdown_path = self.fuel_consumption_breakdown(
|
||||
'fuel_consumption_breakdown_after_retrofit',
|
||||
self.retrofitted_data)
|
||||
life_cycle_cost_sqm_stacked_bar_chart_path = self.life_cycle_cost_stacked_bar('lcc_per_sqm',
|
||||
'LCC Analysis')
|
||||
# Add current state of energy demands in the city
|
||||
self.report.add_subsection('Current State of Energy Demands in the City')
|
||||
self.report.add_text('The total monthly energy demands in the city are shown in Figure 1. It should be noted '
|
||||
'that the electricity demand refers to total lighting and appliance electricity demands')
|
||||
self.report.add_image(str(current_demand_chart_path).replace('\\', '/'),
|
||||
'Total Monthly Energy Demands in City',
|
||||
placement='h')
|
||||
|
||||
# Add current state of energy consumption in the city
|
||||
self.report.add_subsection('Current State of Energy Consumption in the City')
|
||||
self.report.add_text('The following figure shows the amount of energy consumed to supply heating, cooling, and '
|
||||
'domestic hot water needs in the city. The details of the systems in each building before '
|
||||
'and after retrofit are provided in Section 4. \par')
|
||||
self.report.add_image(str(current_consumption_chart_path).replace('\\', '/'),
|
||||
'Total Monthly Energy Consumptions in City',
|
||||
placement='H')
|
||||
self.report.add_text('Figure 3 shows the yearly energy supplied to the city by fuel in different sectors. '
|
||||
'All the values are in kWh.')
|
||||
self.report.add_image(str(current_consumption_breakdown_path).replace('\\', '/'),
|
||||
'Current Energy Consumption Breakdown in the City by Fuel',
|
||||
placement='H')
|
||||
self.report.add_section(f'{self.retrofit_scenario}')
|
||||
self.report.add_subsection('Proposed Systems')
|
||||
self.energy_system_archetype_schematic()
|
||||
if 'PV' in self.retrofit_scenario:
|
||||
self.report.add_subsection('Rooftop Photovoltaic System Implementation')
|
||||
self.pv_system()
|
||||
if 'System' in self.retrofit_scenario:
|
||||
self.report.add_subsection('Retrofitted HVAC and DHW Systems')
|
||||
self.report.add_text('Figure 6 shows a comparison between total monthly energy consumption in the selected '
|
||||
'buildings before and after retrofitting.')
|
||||
consumption_comparison = self.energy_consumption_comparison(self.current_status_data['monthly_consumptions'],
|
||||
self.retrofitted_data['monthly_consumptions'],
|
||||
'energy_consumption_comparison_in_city',
|
||||
'Total Monthly Energy Consumption Comparison in '
|
||||
'Buildings')
|
||||
self.report.add_image(str(consumption_comparison).replace('\\', '/'),
|
||||
caption='Comparison of Total Monthly Energy Consumption in City Buildings',
|
||||
placement='H')
|
||||
self.yearly_consumption_comparison()
|
||||
self.report.add_text('Figure 7 shows the fuel consumption breakdown in the area after the retrofit.')
|
||||
self.report.add_image(str(retrofitted_consumption_breakdown_path).replace('\\', '/'),
|
||||
caption=f'Fuel Consumption Breakdown After {self.retrofit_scenario}',
|
||||
placement='H')
|
||||
self.report.add_subsection('Life Cycle Cost Analysis')
|
||||
self.report.add_image(str(life_cycle_cost_sqm_stacked_bar_chart_path).replace('\\', '/'),
|
||||
caption='Average Life Cycle Cost Components',
|
||||
placement='H')
|
||||
|
||||
# Save and compile the report
|
||||
self.report.save_report()
|
||||
self.report.compile_to_pdf()
|
|
@ -1,176 +1,68 @@
|
|||
import hub.helpers.constants as cte
|
||||
|
||||
|
||||
def hourly_electricity_consumption_profile(building):
|
||||
hourly_electricity_consumption = []
|
||||
energy_systems = building.energy_systems
|
||||
appliance = building.appliances_electrical_demand[cte.HOUR]
|
||||
lighting = building.lighting_electrical_demand[cte.HOUR]
|
||||
elec_heating = 0
|
||||
elec_cooling = 0
|
||||
elec_dhw = 0
|
||||
if cte.HEATING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_heating = 1
|
||||
if cte.COOLING in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_cooling = 1
|
||||
if cte.DOMESTIC_HOT_WATER in building.energy_consumption_breakdown[cte.ELECTRICITY]:
|
||||
elec_dhw = 1
|
||||
heating = None
|
||||
cooling = None
|
||||
dhw = None
|
||||
if elec_heating == 1:
|
||||
def system_results(buildings):
|
||||
system_performance_summary = {}
|
||||
fields = ["Energy System Archetype", "Heating Equipments", "Cooling Equipments", "DHW Equipments",
|
||||
"Photovoltaic System Capacity", "Heating Fuel", "Yearly HVAC Energy Consumption (MWh)",
|
||||
"DHW Energy Consumption (MWH)", "PV Yearly Production (kWh)", "LCC Analysis Duration (Years)",
|
||||
"Energy System Capital Cost (CAD)", "Energy System Average Yearly Operational Cost (CAD)",
|
||||
"Energy System Life Cycle Cost (CAD)"]
|
||||
for building in buildings:
|
||||
system_performance_summary[f'{building.name}'] = {}
|
||||
for field in fields:
|
||||
system_performance_summary[f'{building.name}'][field] = '-'
|
||||
|
||||
for building in buildings:
|
||||
fuels = []
|
||||
system_performance_summary[f'{building.name}']['Energy System Archetype'] = building.energy_systems_archetype_name
|
||||
energy_systems = building.energy_systems
|
||||
for energy_system in energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.HEATING in generation_system.energy_consumption:
|
||||
heating = generation_system.energy_consumption[cte.HEATING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
heating = [x / 2 for x in building.heating_consumption[cte.HOUR]]
|
||||
else:
|
||||
heating = building.heating_consumption[cte.HOUR]
|
||||
if elec_dhw == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.DOMESTIC_HOT_WATER in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
if cte.DOMESTIC_HOT_WATER in generation_system.energy_consumption:
|
||||
dhw = generation_system.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
dhw = [x / 2 for x in building.domestic_hot_water_consumption[cte.HOUR]]
|
||||
else:
|
||||
dhw = building.domestic_hot_water_consumption[cte.HOUR]
|
||||
|
||||
if elec_cooling == 1:
|
||||
for energy_system in energy_systems:
|
||||
if cte.COOLING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if cte.COOLING in generation_system.energy_consumption:
|
||||
cooling = generation_system.energy_consumption[cte.COOLING][cte.HOUR]
|
||||
else:
|
||||
if len(energy_system.generation_systems) > 1:
|
||||
cooling = [x / 2 for x in building.cooling_consumption[cte.HOUR]]
|
||||
else:
|
||||
cooling = building.cooling_consumption[cte.HOUR]
|
||||
|
||||
for i in range(len(building.heating_demand[cte.HOUR])):
|
||||
hourly = 0
|
||||
hourly += appliance[i] / 3600
|
||||
hourly += lighting[i] / 3600
|
||||
if heating is not None:
|
||||
hourly += heating[i] / 3600
|
||||
if cooling is not None:
|
||||
hourly += cooling[i] / 3600
|
||||
if dhw is not None:
|
||||
hourly += dhw[i] / 3600
|
||||
hourly_electricity_consumption.append(hourly)
|
||||
return hourly_electricity_consumption
|
||||
demand_types = energy_system.demand_types
|
||||
for demand_type in demand_types:
|
||||
if demand_type == cte.COOLING:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
cooling_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['Cooling Equipments'] = cooling_equipments
|
||||
elif demand_type == cte.HEATING:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.nominal_heat_output is not None:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
fuels.append(generation_system.fuel_type)
|
||||
heating_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['Heating Equipments'] = heating_equipments
|
||||
elif demand_type == cte.DOMESTIC_HOT_WATER:
|
||||
equipments = []
|
||||
for generation_system in energy_system.generation_systems:
|
||||
equipments.append(generation_system.name or generation_system.system_type)
|
||||
dhw_equipments = ", ".join(equipments)
|
||||
system_performance_summary[f'{building.name}']['DHW Equipments'] = dhw_equipments
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.PHOTOVOLTAIC:
|
||||
system_performance_summary[f'{building.name}'][
|
||||
'Photovoltaic System Capacity'] = generation_system.nominal_electricity_output or str(0)
|
||||
heating_fuels = ", ".join(fuels)
|
||||
system_performance_summary[f'{building.name}']['Heating Fuel'] = heating_fuels
|
||||
system_performance_summary[f'{building.name}']['Yearly HVAC Energy Consumption (MWh)'] = format(
|
||||
(building.heating_consumption[cte.YEAR][0] + building.cooling_consumption[cte.YEAR][0]) / 3.6e9, '.2f')
|
||||
system_performance_summary[f'{building.name}']['DHW Energy Consumption (MWH)'] = format(
|
||||
building.domestic_hot_water_consumption[cte.YEAR][0] / 1e6, '.2f')
|
||||
return system_performance_summary
|
||||
|
||||
|
||||
def consumption_data(city):
|
||||
energy_consumption_data = {}
|
||||
for building in city.buildings:
|
||||
hourly_electricity_consumption = hourly_electricity_consumption_profile(building)
|
||||
energy_consumption_data[f'{building.name}'] = {'heating_consumption': building.heating_consumption,
|
||||
'cooling_consumption': building.cooling_consumption,
|
||||
'domestic_hot_water_consumption':
|
||||
building.domestic_hot_water_consumption,
|
||||
'energy_consumption_breakdown':
|
||||
building.energy_consumption_breakdown,
|
||||
'hourly_electricity_consumption': hourly_electricity_consumption}
|
||||
peak_electricity_consumption = 0
|
||||
for building in energy_consumption_data:
|
||||
peak_electricity_consumption += max(energy_consumption_data[building]['hourly_electricity_consumption'])
|
||||
heating_demand_monthly = []
|
||||
cooling_demand_monthly = []
|
||||
dhw_demand_monthly = []
|
||||
lighting_appliance_monthly = []
|
||||
heating_consumption_monthly = []
|
||||
cooling_consumption_monthly = []
|
||||
dhw_consumption_monthly = []
|
||||
for i in range(12):
|
||||
heating_demand = 0
|
||||
cooling_demand = 0
|
||||
dhw_demand = 0
|
||||
lighting_appliance_demand = 0
|
||||
heating_consumption = 0
|
||||
cooling_consumption = 0
|
||||
dhw_consumption = 0
|
||||
for building in city.buildings:
|
||||
heating_demand += building.heating_demand[cte.MONTH][i] / 3.6e6
|
||||
cooling_demand += building.cooling_demand[cte.MONTH][i] / 3.6e6
|
||||
dhw_demand += building.domestic_hot_water_heat_demand[cte.MONTH][i] / 3.6e6
|
||||
lighting_appliance_demand += building.lighting_electrical_demand[cte.MONTH][i] / 3.6e6
|
||||
heating_consumption += building.heating_consumption[cte.MONTH][i] / 3.6e6
|
||||
if building.cooling_consumption[cte.YEAR][0] == 0:
|
||||
cooling_consumption += building.cooling_demand[cte.MONTH][i] / (3.6e6 * 2)
|
||||
else:
|
||||
cooling_consumption += building.cooling_consumption[cte.MONTH][i] / 3.6e6
|
||||
dhw_consumption += building.domestic_hot_water_consumption[cte.MONTH][i] / 3.6e6
|
||||
heating_demand_monthly.append(heating_demand)
|
||||
cooling_demand_monthly.append(cooling_demand)
|
||||
dhw_demand_monthly.append(dhw_demand)
|
||||
lighting_appliance_monthly.append(lighting_appliance_demand)
|
||||
heating_consumption_monthly.append(heating_consumption)
|
||||
cooling_consumption_monthly.append(cooling_consumption)
|
||||
dhw_consumption_monthly.append(dhw_consumption)
|
||||
|
||||
monthly_demands = {'heating': heating_demand_monthly,
|
||||
'cooling': cooling_demand_monthly,
|
||||
'dhw': dhw_demand_monthly,
|
||||
'lighting_appliance': lighting_appliance_monthly}
|
||||
monthly_consumptions = {'heating': heating_consumption_monthly,
|
||||
'cooling': cooling_consumption_monthly,
|
||||
'dhw': dhw_consumption_monthly}
|
||||
yearly_heating = 0
|
||||
yearly_cooling = 0
|
||||
yearly_dhw = 0
|
||||
yearly_appliance = 0
|
||||
yearly_lighting = 0
|
||||
for building in city.buildings:
|
||||
yearly_appliance += building.appliances_electrical_demand[cte.YEAR][0] / 3.6e9
|
||||
yearly_lighting += building.lighting_electrical_demand[cte.YEAR][0] / 3.6e9
|
||||
yearly_heating += building.heating_consumption[cte.YEAR][0] / 3.6e9
|
||||
yearly_cooling += building.cooling_consumption[cte.YEAR][0] / 3.6e9
|
||||
yearly_dhw += building.domestic_hot_water_consumption[cte.YEAR][0] / 3.6e9
|
||||
|
||||
total_consumption = yearly_heating + yearly_cooling + yearly_dhw + yearly_appliance + yearly_lighting
|
||||
energy_consumption_data['monthly_demands'] = monthly_demands
|
||||
energy_consumption_data['monthly_consumptions'] = monthly_consumptions
|
||||
energy_consumption_data['total_consumption'] = total_consumption
|
||||
energy_consumption_data['maximum_hourly_electricity_consumption'] = peak_electricity_consumption
|
||||
|
||||
return energy_consumption_data
|
||||
|
||||
|
||||
def cost_data(building, lcc_dataframe, cost_retrofit_scenario):
|
||||
total_floor_area = 0
|
||||
for thermal_zone in building.thermal_zones_from_internal_zones:
|
||||
total_floor_area += thermal_zone.total_floor_area
|
||||
capital_cost = lcc_dataframe.loc['total_capital_costs_systems', f'Scenario {cost_retrofit_scenario}']
|
||||
operational_cost = lcc_dataframe.loc['total_operational_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
maintenance_cost = lcc_dataframe.loc['total_maintenance_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
end_of_life_cost = lcc_dataframe.loc['end_of_life_costs', f'Scenario {cost_retrofit_scenario}']
|
||||
operational_income = lcc_dataframe.loc['operational_incomes', f'Scenario {cost_retrofit_scenario}']
|
||||
total_life_cycle_cost = capital_cost + operational_cost + maintenance_cost + end_of_life_cost + operational_income
|
||||
specific_capital_cost = capital_cost / total_floor_area
|
||||
specific_operational_cost = operational_cost / total_floor_area
|
||||
specific_maintenance_cost = maintenance_cost / total_floor_area
|
||||
specific_end_of_life_cost = end_of_life_cost / total_floor_area
|
||||
specific_operational_income = operational_income / total_floor_area
|
||||
specific_life_cycle_cost = total_life_cycle_cost / total_floor_area
|
||||
life_cycle_cost_analysis = {'capital_cost': capital_cost,
|
||||
'capital_cost_per_sqm': specific_capital_cost,
|
||||
'operational_cost': operational_cost,
|
||||
'operational_cost_per_sqm': specific_operational_cost,
|
||||
'maintenance_cost': maintenance_cost,
|
||||
'maintenance_cost_per_sqm': specific_maintenance_cost,
|
||||
'end_of_life_cost': end_of_life_cost,
|
||||
'end_of_life_cost_per_sqm': specific_end_of_life_cost,
|
||||
'operational_income': operational_income,
|
||||
'operational_income_per_sqm': specific_operational_income,
|
||||
'total_life_cycle_cost': total_life_cycle_cost,
|
||||
'total_life_cycle_cost_per_sqm': specific_life_cycle_cost}
|
||||
return life_cycle_cost_analysis
|
||||
def new_system_results(buildings):
|
||||
new_system_performance_summary = {}
|
||||
fields = ["Energy System Archetype", "Heating Equipments", "Cooling Equipments", "DHW Equipments",
|
||||
"Photovoltaic System Capacity", "Heating Fuel", "Yearly HVAC Energy Consumption (MWh)",
|
||||
"DHW Energy Consumption (MWH)", "PV Yearly Production (kWh)", "LCC Analysis Duration (Years)",
|
||||
"Energy System Capital Cost (CAD)", "Energy System Average Yearly Operational Cost (CAD)",
|
||||
"Energy System Life Cycle Cost (CAD)"]
|
||||
for building in buildings:
|
||||
new_system_performance_summary[f'{building.name}'] = {}
|
||||
for field in fields:
|
||||
new_system_performance_summary[f'{building.name}'][field] = '-'
|
||||
return new_system_performance_summary
|
||||
|
|
|
@ -8,7 +8,6 @@ Project Coder Saeed Ranjbar saeed.ranjbar@mail.concordia.ca
|
|||
from scripts.system_simulation_models.archetype13 import Archetype13
|
||||
from scripts.system_simulation_models.archetype13_stratified_tes import Archetype13Stratified
|
||||
from scripts.system_simulation_models.archetype1 import Archetype1
|
||||
from scripts.system_simulation_models.archetypes14_15 import Archetype14_15
|
||||
|
||||
|
||||
class EnergySystemsSimulationFactory:
|
||||
|
@ -37,15 +36,6 @@ class EnergySystemsSimulationFactory:
|
|||
self._building.level_of_detail.energy_systems = 2
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
|
||||
def _archetype14_15(self):
|
||||
"""
|
||||
Enrich the city by using the sizing and simulation model developed for archetype14 and archetype15 of
|
||||
montreal_future_systems
|
||||
"""
|
||||
Archetype14_15(self._building, self._output_path).enrich_buildings()
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
self._building.level_of_detail.energy_systems = 2
|
||||
|
||||
def enrich(self):
|
||||
"""
|
||||
Enrich the city given to the class using the class given handler
|
||||
|
|
|
@ -9,10 +9,10 @@ from hub.imports.results_factory import ResultFactory
|
|||
sys.path.append('./')
|
||||
|
||||
|
||||
def energy_plus_workflow(city, output_path):
|
||||
def energy_plus_workflow(city):
|
||||
try:
|
||||
# city = city
|
||||
out_path = output_path
|
||||
out_path = (Path(__file__).parent.parent / 'out_files')
|
||||
files = glob.glob(f'{out_path}/*')
|
||||
|
||||
# for file in files:
|
||||
|
|
|
@ -4,16 +4,13 @@ from shapely import Point
|
|||
from pathlib import Path
|
||||
|
||||
|
||||
def process_geojson(x, y, diff, expansion=False):
|
||||
def process_geojson(x, y, diff):
|
||||
selection_box = Polygon([[x + diff, y - diff],
|
||||
[x - diff, y - diff],
|
||||
[x - diff, y + diff],
|
||||
[x + diff, y + diff]])
|
||||
geojson_file = Path('./data/collinear_clean 2.geojson').resolve()
|
||||
if not expansion:
|
||||
output_file = Path('./input_files/output_buildings.geojson').resolve()
|
||||
else:
|
||||
output_file = Path('./input_files/output_buildings_expanded.geojson').resolve()
|
||||
output_file = Path('./input_files/output_buildings.geojson').resolve()
|
||||
buildings_in_region = []
|
||||
|
||||
with open(geojson_file, 'r') as file:
|
||||
|
|
|
@ -1,37 +0,0 @@
|
|||
from pathlib import Path
|
||||
import subprocess
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
|
||||
|
||||
def pv_feasibility(current_x, current_y, current_diff, selected_buildings):
|
||||
input_files_path = (Path(__file__).parent.parent / 'input_files')
|
||||
output_path = (Path(__file__).parent.parent / 'out_files').resolve()
|
||||
sra_output_path = output_path / 'sra_outputs' / 'extended_city_sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
new_diff = current_diff * 5
|
||||
geojson_file = process_geojson(x=current_x, y=current_y, diff=new_diff, expansion=True)
|
||||
file_path = input_files_path / 'output_buildings.geojson'
|
||||
city = GeometryFactory('geojson',
|
||||
path=file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
WeatherFactory('epw', city).enrich()
|
||||
ExportsFactory('sra', city, sra_output_path).export()
|
||||
sra_path = (sra_output_path / f'{city.name}_sra.xml').resolve()
|
||||
subprocess.run(['sra', str(sra_path)])
|
||||
ResultFactory('sra', city, sra_output_path).enrich()
|
||||
for selected_building in selected_buildings:
|
||||
for building in city.buildings:
|
||||
if selected_building.name == building.name:
|
||||
selected_building.roofs[0].global_irradiance = building.roofs[0].global_irradiance
|
||||
|
||||
|
||||
|
||||
|
|
@ -49,11 +49,18 @@ class PVSizingSimulation(RadiationTilted):
|
|||
available_roof = self.available_space()
|
||||
inter_row_spacing = self.inter_row_spacing()
|
||||
self.number_of_panels(available_roof, inter_row_spacing)
|
||||
self.building.roofs[0].installed_solar_collector_area = pv_module_area * self.total_number_of_panels
|
||||
system_efficiency = 0.2
|
||||
pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area *
|
||||
cte.WATTS_HOUR_TO_JULES for x in radiation]
|
||||
pv_hourly_production = [x * system_efficiency * self.total_number_of_panels * pv_module_area for x in radiation]
|
||||
self.building.onsite_electrical_production[cte.HOUR] = pv_hourly_production
|
||||
self.building.onsite_electrical_production[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self.building.onsite_electrical_production[cte.HOUR]))
|
||||
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
|
||||
self.building.onsite_electrical_production[cte.YEAR] = [sum(self.building.onsite_electrical_production[cte.MONTH])]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -15,8 +15,8 @@ from hub.city_model_structure.building import Building
|
|||
energy_systems_format = 'montreal_custom'
|
||||
|
||||
# parameters:
|
||||
residential_systems_percentage = {'system 1 gas': 15,
|
||||
'system 1 electricity': 35,
|
||||
residential_systems_percentage = {'system 1 gas': 100,
|
||||
'system 1 electricity': 0,
|
||||
'system 2 gas': 0,
|
||||
'system 2 electricity': 0,
|
||||
'system 3 and 4 gas': 0,
|
||||
|
@ -25,11 +25,11 @@ residential_systems_percentage = {'system 1 gas': 15,
|
|||
'system 5 electricity': 0,
|
||||
'system 6 gas': 0,
|
||||
'system 6 electricity': 0,
|
||||
'system 8 gas': 15,
|
||||
'system 8 electricity': 35}
|
||||
'system 8 gas': 0,
|
||||
'system 8 electricity': 0}
|
||||
|
||||
residential_new_systems_percentage = {'PV+ASHP+GasBoiler+TES': 100,
|
||||
'PV+4Pipe+DHW': 0,
|
||||
residential_new_systems_percentage = {'PV+ASHP+GasBoiler+TES': 0,
|
||||
'PV+4Pipe+DHW': 100,
|
||||
'PV+ASHP+ElectricBoiler+TES': 0,
|
||||
'PV+GSHP+GasBoiler+TES': 0,
|
||||
'PV+GSHP+ElectricBoiler+TES': 0,
|
||||
|
|
|
@ -1,119 +1,73 @@
|
|||
import subprocess
|
||||
import datetime
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class LatexReport:
|
||||
def __init__(self, file_name, title, subtitle, output_path):
|
||||
self.file_name = file_name
|
||||
self.output_path = Path(output_path) / 'report'
|
||||
self.output_path.mkdir(parents=True, exist_ok=True)
|
||||
self.file_path = self.output_path / f"{file_name}.tex"
|
||||
self.content = []
|
||||
self.content.append(r'\documentclass{article}')
|
||||
self.content.append(r'\usepackage[margin=2.5cm]{geometry}')
|
||||
self.content.append(r'\usepackage{graphicx}')
|
||||
self.content.append(r'\usepackage{tabularx}')
|
||||
self.content.append(r'\usepackage{multirow}')
|
||||
self.content.append(r'\usepackage{float}')
|
||||
self.content.append(r'\begin{document}')
|
||||
|
||||
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
self.content.append(r'\title{' + title + '}')
|
||||
self.content.append(r'\author{Next-Generation Cities Institute}')
|
||||
self.content.append(r'\date{}')
|
||||
self.content.append(r'\maketitle')
|
||||
|
||||
self.content.append(r'\begin{center}')
|
||||
self.content.append(r'\large ' + subtitle + r'\\')
|
||||
self.content.append(r'\large ' + current_datetime)
|
||||
self.content.append(r'\end{center}')
|
||||
def __init__(self, file_name):
|
||||
self.file_name = file_name
|
||||
self.content = []
|
||||
self.content.append(r'\documentclass{article}')
|
||||
self.content.append(r'\usepackage[margin=2.5cm]{geometry}') # Adjust page margins
|
||||
self.content.append(r'\usepackage{graphicx}')
|
||||
self.content.append(r'\usepackage{tabularx}')
|
||||
self.content.append(r'\begin{document}')
|
||||
# Get current date and time
|
||||
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
self.content.append(r'\title{Energy System Analysis Report - ' + current_datetime + r'}')
|
||||
self.content.append(r'\author{Next-Generation Cities Institute}')
|
||||
self.content.append(r'\date{}') # Remove the date field, as it's included in the title now
|
||||
self.content.append(r'\maketitle')
|
||||
|
||||
def add_section(self, section_title):
|
||||
self.content.append(r'\section{' + section_title + r'}')
|
||||
self.content.append(r'\section{' + section_title + r'}')
|
||||
|
||||
def add_subsection(self, subsection_title):
|
||||
self.content.append(r'\subsection{' + subsection_title + r'}')
|
||||
|
||||
def add_subsubsection(self, subsection_title):
|
||||
self.content.append(r'\subsubsection{' + subsection_title + r'}')
|
||||
self.content.append(r'\subsection{' + subsection_title + r'}')
|
||||
|
||||
def add_text(self, text):
|
||||
self.content.append(text)
|
||||
self.content.append(text)
|
||||
|
||||
def add_table(self, table_data, caption=None, first_column_width=None, merge_first_column=False):
|
||||
def add_table(self, table_data, caption=None, first_column_width=None):
|
||||
num_columns = len(table_data[0])
|
||||
total_width = 0.9
|
||||
first_column_width_str = ''
|
||||
total_width = 0.9 # Default total width
|
||||
|
||||
if first_column_width is not None:
|
||||
first_column_width_str = str(first_column_width) + 'cm'
|
||||
total_width -= first_column_width / 16.0
|
||||
total_width -= first_column_width / 16.0 # Adjust total width for the first column
|
||||
|
||||
if caption:
|
||||
self.content.append(r'\begin{table}[htbp]')
|
||||
self.content.append(r'\caption{' + caption + r'}')
|
||||
self.content.append(r'\centering')
|
||||
|
||||
column_format = '|p{' + first_column_width_str + r'}|' + '|'.join(
|
||||
['X'] * (num_columns - 1)) + '|' if first_column_width is not None else '|' + '|'.join(['X'] * num_columns) + '|'
|
||||
self.content.append(r'\begin{tabularx}{\textwidth}{' + column_format + '}')
|
||||
self.content.append(r'\begin{tabularx}{\textwidth}{|p{' + first_column_width_str + r'}|' + '|'.join(['X'] * (
|
||||
num_columns - 1)) + '|}' if first_column_width is not None else r'\begin{tabularx}{\textwidth}{|' + '|'.join(
|
||||
['X'] * num_columns) + '|}')
|
||||
self.content.append(r'\hline')
|
||||
|
||||
previous_first_column = None
|
||||
rowspan_count = 1
|
||||
|
||||
for i, row in enumerate(table_data):
|
||||
if merge_first_column and i > 0 and row[0] == previous_first_column:
|
||||
rowspan_count += 1
|
||||
self.content.append(' & '.join(['' if j == 0 else cell for j, cell in enumerate(row)]) + r' \\')
|
||||
else:
|
||||
if merge_first_column and i > 0 and rowspan_count > 1:
|
||||
self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
|
||||
r'\multirow{' + str(rowspan_count) + '}')
|
||||
rowspan_count = 1
|
||||
if merge_first_column and i < len(table_data) - 1 and row[0] == table_data[i + 1][0]:
|
||||
self.content.append(r'\multirow{1}{*}{' + row[0] + '}' + ' & ' + ' & '.join(row[1:]) + r' \\')
|
||||
else:
|
||||
self.content.append(' & '.join(row) + r' \\')
|
||||
previous_first_column = row[0]
|
||||
for row in table_data:
|
||||
self.content.append(' & '.join(row) + r' \\')
|
||||
self.content.append(r'\hline')
|
||||
|
||||
if merge_first_column and rowspan_count > 1:
|
||||
self.content[-rowspan_count] = self.content[-rowspan_count].replace(r'\multirow{1}',
|
||||
r'\multirow{' + str(rowspan_count) + '}')
|
||||
|
||||
self.content.append(r'\end{tabularx}')
|
||||
|
||||
if caption:
|
||||
self.content.append(r'\end{table}')
|
||||
|
||||
def add_image(self, image_path, caption=None, placement='ht'):
|
||||
def add_image(self, image_path, caption=None):
|
||||
if caption:
|
||||
self.content.append(r'\begin{figure}[' + placement + r']')
|
||||
self.content.append(r'\begin{figure}[htbp]')
|
||||
self.content.append(r'\centering')
|
||||
self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\includegraphics[width=0.8\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\caption{' + caption + r'}')
|
||||
self.content.append(r'\end{figure}')
|
||||
else:
|
||||
self.content.append(r'\begin{figure}[' + placement + r']')
|
||||
self.content.append(r'\begin{figure}[htbp]')
|
||||
self.content.append(r'\centering')
|
||||
self.content.append(r'\includegraphics[width=\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\includegraphics[width=0.8\textwidth]{' + image_path + r'}')
|
||||
self.content.append(r'\end{figure}')
|
||||
|
||||
def add_itemize(self, items):
|
||||
self.content.append(r'\begin{itemize}')
|
||||
for item in items:
|
||||
self.content.append(r'\item ' + item)
|
||||
self.content.append(r'\end{itemize}')
|
||||
|
||||
def save_report(self):
|
||||
self.content.append(r'\end{document}')
|
||||
with open(self.file_path, 'w') as f:
|
||||
self.content.append(r'\end{document}') # Add this line to close the document
|
||||
with open(self.file_name, 'w') as f:
|
||||
f.write('\n'.join(self.content))
|
||||
|
||||
def compile_to_pdf(self):
|
||||
subprocess.run(['pdflatex', '-output-directory', str(self.output_path), str(self.file_path)])
|
||||
|
||||
subprocess.run(['pdflatex', self.file_name])
|
||||
|
|
135
scripts/system_simulation.py
Normal file
135
scripts/system_simulation.py
Normal file
|
@ -0,0 +1,135 @@
|
|||
import csv
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import hub.helpers.constants as cte
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class SystemSimulation:
|
||||
def __init__(self, building, out_path):
|
||||
self.building = building
|
||||
self.energy_systems = building.energy_systems
|
||||
self.heating_demand = [0] + building.heating_demand[cte.HOUR]
|
||||
self.cooling_demand = building.cooling_demand
|
||||
self.dhw_demand = building.domestic_hot_water_heat_demand
|
||||
self.T_out = building.external_temperature[cte.HOUR]
|
||||
self.maximum_heating_demand = building.heating_peak_load[cte.YEAR][0]
|
||||
self.maximum_cooling_demand = building.cooling_peak_load[cte.YEAR][0]
|
||||
self.name = building.name
|
||||
self.energy_system_archetype = building.energy_systems_archetype_name
|
||||
self.out_path = out_path
|
||||
|
||||
def archetype1(self):
|
||||
out_path = self.out_path
|
||||
T, T_sup, T_ret, m_ch, m_dis, q_hp, q_aux = [0] * len(self.heating_demand), [0] * len(
|
||||
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand), [0] * len(
|
||||
self.heating_demand), [0] * len(self.heating_demand), [0] * len(self.heating_demand)
|
||||
hp_electricity: List[float] = [0.0] * len(self.heating_demand)
|
||||
aux_fuel: List[float] = [0.0] * len(self.heating_demand)
|
||||
heating_consumption: List[float] = [0.0] * len(self.heating_demand)
|
||||
boiler_consumption: List[float] = [0.0] * len(self.heating_demand)
|
||||
T[0], dt = 25, 3600 # Assuming dt is defined somewhere
|
||||
ua, v, hp_cap, hp_efficiency, boiler_efficiency = 0, 0, 0, 0, 0
|
||||
for energy_system in self.energy_systems:
|
||||
if cte.ELECTRICITY not in energy_system.demand_types:
|
||||
generation_systems = energy_system.generation_systems
|
||||
for generation_system in generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP and cte.HEATING in energy_system.demand_types:
|
||||
hp_cap = generation_system.nominal_heat_output
|
||||
hp_efficiency = float(generation_system.heat_efficiency)
|
||||
for storage in generation_system.energy_storage_systems:
|
||||
if storage.type_energy_stored == 'thermal':
|
||||
v, h = float(storage.volume), float(storage.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
storage.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
elif generation_system.system_type == cte.BOILER:
|
||||
boiler_cap = generation_system.nominal_heat_output
|
||||
boiler_efficiency = float(generation_system.heat_efficiency)
|
||||
|
||||
for i in range(len(self.heating_demand) - 1):
|
||||
T[i + 1] = T[i] + ((m_ch[i] * (T_sup[i] - T[i])) + (
|
||||
ua * (self.T_out[i] - T[i])) / cte.WATER_HEAT_CAPACITY - m_dis[i] * (T[i] - T_ret[i])) * (dt / (cte.WATER_DENSITY * v))
|
||||
if T[i + 1] < 35:
|
||||
q_hp[i + 1] = hp_cap * 1000
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 7)
|
||||
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
|
||||
elif 35 <= T[i + 1] < 45 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
T_sup[i + 1] = T[i + 1]
|
||||
elif 35 <= T[i + 1] < 45 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_cap * 1000
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * 3)
|
||||
T_sup[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + T[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], T_sup[i + 1] = 0, 0, T[i + 1]
|
||||
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
|
||||
if self.heating_demand[i + 1] == 0:
|
||||
m_dis[i + 1], t_return, T_ret[i + 1] = 0, T[i + 1], T[i + 1]
|
||||
else:
|
||||
if self.heating_demand[i + 1] > 0.5 * self.maximum_heating_demand:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self.maximum_heating_demand / (cte.WATER_HEAT_CAPACITY * factor * 3600)
|
||||
t_return = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
|
||||
if m_dis[i + 1] == 0 or (m_dis[i + 1] > 0 and t_return < 25):
|
||||
T_ret[i + 1] = max(25, T[i + 1])
|
||||
else:
|
||||
T_ret[i + 1] = T[i + 1] - self.heating_demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * 3600)
|
||||
tes_output = m_dis[i + 1] * cte.WATER_HEAT_CAPACITY * (T[i + 1] - T_ret[i + 1])
|
||||
if tes_output < (self.heating_demand[i + 1] / 3600):
|
||||
q_aux[i + 1] = (self.heating_demand[i + 1] / 3600) - tes_output
|
||||
aux_fuel[i + 1] = (q_aux[i + 1] * dt) / 35.8e6
|
||||
boiler_consumption[i + 1] = q_aux[i + 1] / boiler_efficiency
|
||||
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
|
||||
data = list(zip(T, T_sup, T_ret, m_ch, m_dis, q_hp, hp_electricity, aux_fuel, q_aux, self.heating_demand))
|
||||
file_name = f'simulation_results_{self.name}.csv'
|
||||
with open(out_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(['T', 'T_sup', 'T_ret', 'm_ch', 'm_dis', 'q_hp', 'hp_electricity', 'aux_fuel', 'q_aux', 'heating_demand'])
|
||||
# Write data
|
||||
output_file.writerows(data)
|
||||
return heating_consumption, hp_electricity, boiler_consumption, T_sup
|
||||
|
||||
def enrich(self):
|
||||
if self.energy_system_archetype == 'PV+ASHP+GasBoiler+TES' or 'PV+4Pipe+DHW':
|
||||
building_new_heating_consumption, building_heating_electricity_consumption, building_heating_gas_consumption, supply_temperature = (
|
||||
self.archetype1())
|
||||
self.building.heating_consumption[cte.HOUR] = building_new_heating_consumption
|
||||
self.building.heating_consumption[cte.MONTH] = MonthlyValues.get_total_month(self.building.heating_consumption[cte.HOUR])
|
||||
self.building.heating_consumption[cte.YEAR] = [sum(self.building.heating_consumption[cte.MONTH])]
|
||||
disaggregated_consumption = {}
|
||||
for energy_system in self.building.energy_systems:
|
||||
if cte.HEATING in energy_system.demand_types:
|
||||
for generation_system in energy_system.generation_systems:
|
||||
if generation_system.system_type == cte.HEAT_PUMP:
|
||||
generation_system.heat_supply_temperature = supply_temperature
|
||||
disaggregated_consumption[generation_system.fuel_type] = {}
|
||||
if generation_system.fuel_type == cte.ELECTRICITY:
|
||||
disaggregated_consumption[generation_system.fuel_type][
|
||||
cte.HOUR] = building_heating_electricity_consumption
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
|
||||
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
|
||||
else:
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR] = building_heating_gas_consumption
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.HOUR])
|
||||
disaggregated_consumption[generation_system.fuel_type][cte.YEAR] = [
|
||||
sum(disaggregated_consumption[generation_system.fuel_type][cte.MONTH])]
|
||||
self.building.heating_fuel_consumption_disaggregated = disaggregated_consumption
|
||||
return self.building
|
||||
|
||||
|
|
@ -19,8 +19,6 @@ class Archetype1:
|
|||
self._hourly_dhw_demand = building.domestic_hot_water_heat_demand[cte.HOUR]
|
||||
self._output_path = output_path
|
||||
self._t_out = [0] + building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
self.dt = 900
|
||||
|
||||
def hvac_sizing(self):
|
||||
storage_factor = 3
|
||||
|
@ -31,26 +29,13 @@ class Archetype1:
|
|||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 30))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def dhw_sizing(self):
|
||||
storage_factor = 3
|
||||
dhw_hp = self._dhw_system.generation_systems[0]
|
||||
dhw_hp.nominal_heat_output = 0.7 * self._domestic_hot_water_peak_load
|
||||
dhw_hp.source_temperature = self._t_out
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * 3600) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation(self):
|
||||
hp, boiler, tes = self.hvac_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
demand = self._hourly_heating_demand
|
||||
hp.source_temperature = self._t_out
|
||||
# Heating System Simulation
|
||||
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
|
||||
|
@ -76,7 +61,7 @@ class Archetype1:
|
|||
for i in range(len(demand) - 1):
|
||||
t_tank[i + 1] = (t_tank[i] +
|
||||
((m_ch[i] * (t_sup_hp[i] - t_tank[i])) +
|
||||
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
|
||||
(ua * (self._t_out[i] - t_tank[i] + 5)) / cte.WATER_HEAT_CAPACITY -
|
||||
m_dis[i] * (t_tank[i] - t_ret[i])) * (dt / (cte.WATER_DENSITY * v)))
|
||||
if t_tank[i + 1] < 40:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
|
@ -92,16 +77,16 @@ class Archetype1:
|
|||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
|
||||
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_tank_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_efficiency
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
|
@ -125,253 +110,101 @@ class Archetype1:
|
|||
boiler_gas[i + 1] = (q_boiler[i + 1] * dt) / cte.NATURAL_GAS_LHV
|
||||
boiler_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
heating_consumption[i + 1] = boiler_consumption[i + 1] + hp_electricity[i + 1]
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_consumption]
|
||||
hp_hourly = []
|
||||
boiler_hourly = []
|
||||
boiler_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
boiler_sum += boiler_consumption_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
boiler_hourly.append(boiler_sum)
|
||||
hp_sum = 0
|
||||
boiler_sum = 0
|
||||
hp.energy_consumption[cte.HEATING] = {}
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
boiler.energy_consumption[cte.HEATING] = {}
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
|
||||
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
self.results['Heating Demand (W)'] = demand
|
||||
self.results['HP Heat Output (W)'] = q_hp
|
||||
self.results['HP Source Temperature'] = t_out
|
||||
self.results['HP Supply Temperature'] = t_sup_hp
|
||||
self.results['HP COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['Boiler Heat Output (W)'] = q_boiler
|
||||
self.results['Boiler Supply Temperature'] = t_sup_boiler
|
||||
self.results['Boiler Gas Consumption'] = boiler_consumption
|
||||
self.results['TES Temperature'] = t_tank
|
||||
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
|
||||
self.results['Heating Loop Return Temperature'] = t_ret
|
||||
return hp_hourly, boiler_hourly
|
||||
data = list(zip(self._t_out, q_hp, hp_electricity, hp_cop, m_ch, t_sup_hp, t_tank, m_dis, q_boiler,
|
||||
boiler_gas, t_sup_boiler, t_ret, demand))
|
||||
file_name = f'heating_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(['Outside_air_temperature', 'HP_heat_output(W)', 'HP_heating_electricity_consumption(W)',
|
||||
'HP_COP', 'TES_charge_flow_rate(kg/s)', 'TES_supply_temperature(C)', 'TES_temperature(C)',
|
||||
'TES_discharge_flow_rate(kg/s)', 'Boiler_heat_output(W)', 'Boiler_gas_consumption(m3)',
|
||||
'Boiler_supply_temperature(C)', 'Heating_loop_return_temperature(C)', 'Heating_demand (W)'])
|
||||
# Write data
|
||||
output_file.writerows(data)
|
||||
return heating_consumption, hp_electricity, boiler_consumption, t_sup_hp, t_sup_boiler
|
||||
|
||||
def cooling_system_simulation(self):
|
||||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
demand = self._hourly_cooling_demand
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0.15 * self._cooling_peak_load:
|
||||
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
dt = 3600
|
||||
for i in range(len(demand) - 1):
|
||||
if demand[i] > 0:
|
||||
m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * dt)
|
||||
if t_ret[i] > 13:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
if m[i] == 0:
|
||||
t_ret[i] = t_sup_hp[i]
|
||||
else:
|
||||
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_ret[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[
|
||||
5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
|
||||
hp_eer[i] = 1/((eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit))
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
hp_sum = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_hourly
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 62:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
if t_tank[i] < 60:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
|
||||
else:
|
||||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_out[i] +
|
||||
cop_curve_coefficients[2] * t_out[i] ** 2 +
|
||||
cop_curve_coefficients[3] * t_tank[i] +
|
||||
cop_curve_coefficients[4] * t_tank[i] ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
|
||||
hp_hourly = []
|
||||
coil_hourly = []
|
||||
coil_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
coil_sum += heating_coil_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
coil_hourly.append(coil_sum)
|
||||
hp_sum = 0
|
||||
coil_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
self.results['DHW Demand (W)'] = demand
|
||||
self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['DHW HP Source Temperature'] = t_out
|
||||
self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
self.results['DHW HP COP'] = hp_cop
|
||||
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
self.results['DHW TES Temperature'] = t_tank
|
||||
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_hourly, coil_hourly
|
||||
|
||||
def enrich_buildings(self):
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation()
|
||||
hp_cooling = self.cooling_system_simulation()
|
||||
hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
self._building.heating_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
|
||||
self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
self._building.cooling_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
|
||||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = [
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
data = list(zip(q_hp, hp_electricity, hp_eer, m, t_sup_hp, t_ret, demand, self._t_out))
|
||||
file_name = f'cooling_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(self.results.keys())
|
||||
output_file.writerow(['HP_cooling_output (W)', 'HP_cooling_electricity_consumption (W)', 'HP_EER',
|
||||
'Cooling_loop_flow_rate(kg/s)', 'Cooling_supply_temperature(C)',
|
||||
'Cooling_loop_return_temperature(C)', 'Cooling_demand (W)', 'Outside_Air_Temperature'])
|
||||
# Write data
|
||||
output_file.writerows(zip(*self.results.values()))
|
||||
output_file.writerows(data)
|
||||
return hp_electricity, t_sup_hp
|
||||
|
||||
|
||||
def enrich_buildings(self):
|
||||
(self._building.heating_consumption[cte.HOUR], hp_electricity_heating,
|
||||
boiler_consumption, t_sup_hp, t_sup_boiler) = self.heating_system_simulation()
|
||||
hp_electricity_cooling, t_sup_hp_cooling = self.cooling_system_simulation()
|
||||
self._building.heating_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
self._building.heating_consumption[cte.HOUR])
|
||||
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING] = {}
|
||||
self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING] = {}
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING][cte.HOUR] = hp_electricity_heating
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING][cte.HOUR])
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING][cte.YEAR] = \
|
||||
[sum(self._hvac_system.generation_systems[0].energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING][cte.HOUR] = boiler_consumption
|
||||
self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING][cte.HOUR])
|
||||
self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING][cte.YEAR] = \
|
||||
[sum(self._hvac_system.generation_systems[1].energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
self._hvac_system.generation_systems[0].heat_supply_temperature = t_sup_hp
|
||||
self._hvac_system.generation_systems[1].heat_supply_temperature = t_sup_boiler
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING] = {}
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING][cte.HOUR] = hp_electricity_cooling
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING][cte.HOUR])
|
||||
self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING][cte.YEAR] = \
|
||||
[sum(self._hvac_system.generation_systems[0].energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self._hvac_system.generation_systems[0].cooling_supply_temperature = t_sup_hp_cooling
|
||||
self._dhw_system.generation_systems[0].energy_consumption[cte.DOMESTIC_HOT_WATER] = (
|
||||
self._building.domestic_hot_water_consumption)
|
||||
|
|
|
@ -17,10 +17,9 @@ class Archetype13:
|
|||
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
|
||||
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
|
||||
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
|
||||
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR]]
|
||||
self._hourly_heating_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / cte.HOUR_TO_SECONDS for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = building.domestic_hot_water_heat_demand[cte.HOUR]
|
||||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
|
@ -31,12 +30,11 @@ class Archetype13:
|
|||
heat_pump = self._hvac_system.generation_systems[1]
|
||||
boiler = self._hvac_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
heat_pump.nominal_cooling_output = round(self._cooling_peak_load / 3600)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load / 3600)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
(self._heating_peak_load * storage_factor) / (cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def dhw_sizing(self):
|
||||
|
@ -66,7 +64,6 @@ class Archetype13:
|
|||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 55
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_efficiency = float(hp.heat_efficiency)
|
||||
boiler_heating_cap = boiler.nominal_heat_output
|
||||
hp_delta_t = 5
|
||||
boiler_efficiency = float(boiler.heat_efficiency)
|
||||
|
@ -99,15 +96,15 @@ class Archetype13:
|
|||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
|
||||
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_tank_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
|
@ -126,11 +123,11 @@ class Archetype13:
|
|||
m_dis[i + 1] = 0
|
||||
t_ret[i + 1] = t_tank[i + 1]
|
||||
else:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor)
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
|
||||
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
|
@ -184,19 +181,19 @@ class Archetype13:
|
|||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0.15 * self._cooling_peak_load:
|
||||
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
|
||||
if demand[i] > 0:
|
||||
m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * cte.HOUR_TO_SECONDS)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load:
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load / cte.HOUR_TO_SECONDS:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
|
@ -211,20 +208,20 @@ class Archetype13:
|
|||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
t_sup_hp[i] = t_ret[i -1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
|
||||
hp_eer[i] = (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / hp_eer[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
|
@ -243,7 +240,7 @@ class Archetype13:
|
|||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_cop
|
||||
self.results['HP Cooling COP'] = hp_eer
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
|
@ -277,7 +274,7 @@ class Archetype13:
|
|||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 62:
|
||||
if t_tank[i] < 65:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
|
@ -285,8 +282,14 @@ class Archetype13:
|
|||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
if t_tank[i] < 60:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
diff = delta_t_freshwater + delta_t_demand - delta_t_hp
|
||||
if diff > 0:
|
||||
if diff > 0:
|
||||
power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / self.dt
|
||||
if power <= float(tes.heating_coil_capacity):
|
||||
q_coil[i] = power
|
||||
else:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
|
@ -299,11 +302,11 @@ class Archetype13:
|
|||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_out[i] +
|
||||
cop_curve_coefficients[2] * t_out[i] ** 2 +
|
||||
cop_curve_coefficients[3] * t_tank[i] +
|
||||
cop_curve_coefficients[4] * t_tank[i] ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
|
@ -372,8 +375,8 @@ class Archetype13:
|
|||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = [
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH])]
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
|
|
|
@ -24,7 +24,6 @@ class Archetype13Stratified:
|
|||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
self.dt = 300
|
||||
|
||||
def hvac_sizing(self):
|
||||
storage_factor = 3
|
||||
|
@ -50,7 +49,6 @@ class Archetype13Stratified:
|
|||
|
||||
def heating_system_simulation_stratified(self):
|
||||
hp, boiler, tes = self.hvac_sizing()
|
||||
hp_efficiency = float(hp.heat_efficiency)
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(12)]
|
||||
hp.source_temperature = self._t_out
|
||||
|
@ -116,15 +114,15 @@ class Archetype13Stratified:
|
|||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t4[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t4[i + 1]
|
||||
t_tank_fahrenheit = 1.8 * t4[i + 1] + 32
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_tank_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
|
||||
hp_cop[i + 1] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
|
@ -213,81 +211,66 @@ class Archetype13Stratified:
|
|||
hp = self.hvac_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
demand = self._hourly_cooling_demand
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_eer"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_eer) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0.15 * self._cooling_peak_load:
|
||||
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load:
|
||||
dt = 3600
|
||||
for i in range(len(demand) - 1):
|
||||
if demand[i] > 0:
|
||||
m[i] = self._cooling_peak_load / (cte.WATER_HEAT_CAPACITY * 5 * dt)
|
||||
if t_ret[i] > 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load / dt:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load:
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load / dt:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
t_sup_hp[i] = t_ret[i] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
if m[i] == 0:
|
||||
t_ret[i] = t_sup_hp[i]
|
||||
else:
|
||||
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp[i] = t_ret[i]
|
||||
t_ret[i + 1] = t_ret[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
|
||||
hp_eer[i] = (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_eer[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
hp_sum = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_electricity
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_hourly
|
||||
# self.results['Cooling Demand (W)'] = demand
|
||||
# self.results['HP Cooling Output (W)'] = q_hp
|
||||
# self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
# self.results['HP Cooling COP'] = hp_eer
|
||||
# self.results['HP Electricity Consumption'] = hp_electricity
|
||||
# self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
# self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_electricity
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
demand = self._hourly_dhw_demand
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
|
@ -296,7 +279,7 @@ class Archetype13Stratified:
|
|||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
|
||||
dt = 3600
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
|
@ -309,18 +292,26 @@ class Archetype13Stratified:
|
|||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 62:
|
||||
delta_t_demand = demand[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 65:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
delta_t_hp = q_hp[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
if t_tank[i] < 60:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (dt / (v * cte.WATER_DENSITY))
|
||||
diff = delta_t_freshwater + delta_t_demand - delta_t_hp
|
||||
if diff > 0:
|
||||
if diff > 0:
|
||||
power = diff * (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v) / dt
|
||||
if power <= float(tes.heating_coil_capacity):
|
||||
q_coil[i] = power
|
||||
else:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
elif t_tank[i] < 65:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
|
@ -329,84 +320,69 @@ class Archetype13Stratified:
|
|||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
t_out_fahrenheit = 1.8 * self._t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_out[i] +
|
||||
cop_curve_coefficients[2] * t_out[i] ** 2 +
|
||||
cop_curve_coefficients[3] * t_tank[i] +
|
||||
cop_curve_coefficients[4] * t_tank[i] ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
cop_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)
|
||||
hp_electricity[i] = q_hp[i] / 3.5
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
|
||||
hp_hourly = []
|
||||
coil_hourly = []
|
||||
coil_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
coil_sum += heating_coil_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
coil_hourly.append(coil_sum)
|
||||
hp_sum = 0
|
||||
coil_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_electricity
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = q_coil
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
self.results['DHW Demand (W)'] = demand
|
||||
self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['DHW HP Source Temperature'] = t_out
|
||||
self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
self.results['DHW HP COP'] = hp_cop
|
||||
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
self.results['DHW TES Temperature'] = t_tank
|
||||
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_hourly, coil_hourly
|
||||
|
||||
# self.results['DHW Demand (W)'] = demand
|
||||
# self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
# self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
# self.results['DHW HP Source Temperature'] = self._t_out
|
||||
# self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
# self.results['DHW HP COP'] = hp_cop
|
||||
# self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
# self.results['DHW TES Temperature'] = t_tank
|
||||
# self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
# self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
# self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
# self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_electricity, q_coil
|
||||
|
||||
def enrich_buildings(self):
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation_stratified()
|
||||
hp_cooling = self.cooling_system_simulation()
|
||||
hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
# hp_cooling = self.cooling_system_simulation()
|
||||
# hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
self._building.heating_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
self._building.heating_consumption[cte.YEAR] = sum(self._building.heating_consumption[cte.MONTH])
|
||||
self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
self._building.cooling_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
self._building.cooling_consumption[cte.YEAR] = sum(self._building.cooling_consumption[cte.MONTH])
|
||||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
# dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
# self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
# self._building.heating_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
# self._building.heating_consumption[cte.YEAR] = sum(self._building.heating_consumption[cte.MONTH])
|
||||
# self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
# self._building.cooling_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
# self._building.cooling_consumption[cte.YEAR] = sum(self._building.cooling_consumption[cte.MONTH])
|
||||
# self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
# self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
# MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
# self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
# sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
|
|
|
@ -1,398 +0,0 @@
|
|||
import math
|
||||
import hub.helpers.constants as cte
|
||||
import csv
|
||||
from hub.helpers.monthly_values import MonthlyValues
|
||||
|
||||
|
||||
class Archetype14_15:
|
||||
def __init__(self, building, output_path):
|
||||
self._building = building
|
||||
self._name = building.name
|
||||
if 'PV' in building.energy_systems_archetype_name:
|
||||
i = 1
|
||||
self._pv_system = building.energy_systems[0]
|
||||
else:
|
||||
i = 0
|
||||
self._dhw_system = building.energy_systems[i]
|
||||
self._heating_system = building.energy_systems[i + 1]
|
||||
self._cooling_system = building.energy_systems[i + 2]
|
||||
self._dhw_peak_flow_rate = (building.thermal_zones_from_internal_zones[0].total_floor_area *
|
||||
building.thermal_zones_from_internal_zones[0].domestic_hot_water.peak_flow *
|
||||
cte.WATER_DENSITY)
|
||||
self._heating_peak_load = building.heating_peak_load[cte.YEAR][0]
|
||||
self._cooling_peak_load = building.cooling_peak_load[cte.YEAR][0]
|
||||
self._domestic_hot_water_peak_load = building.domestic_hot_water_peak_load[cte.YEAR][0]
|
||||
self._hourly_heating_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.heating_demand[cte.HOUR]]
|
||||
self._hourly_cooling_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in building.cooling_demand[cte.HOUR]]
|
||||
self._hourly_dhw_demand = [demand / cte.WATTS_HOUR_TO_JULES for demand in
|
||||
building.domestic_hot_water_heat_demand[cte.HOUR]]
|
||||
self._output_path = output_path
|
||||
self._t_out = building.external_temperature[cte.HOUR]
|
||||
self.results = {}
|
||||
self.dt = 900
|
||||
|
||||
def heating_system_sizing(self):
|
||||
storage_factor = 3
|
||||
heat_pump = self._heating_system.generation_systems[1]
|
||||
heat_pump.source_temperature = self._t_out
|
||||
boiler = self._heating_system.generation_systems[0]
|
||||
thermal_storage = boiler.energy_storage_systems[0]
|
||||
heat_pump.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
boiler.nominal_heat_output = round(0.5 * self._heating_peak_load)
|
||||
thermal_storage.volume = round(
|
||||
(self._heating_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 25))
|
||||
return heat_pump, boiler, thermal_storage
|
||||
|
||||
def cooling_system_sizing(self):
|
||||
heat_pump = self._cooling_system.generation_systems[0]
|
||||
heat_pump.nominal_cooling_output = heat_pump.nominal_cooling_output = round(self._cooling_peak_load)
|
||||
heat_pump.source_temperature = self._t_out
|
||||
return heat_pump
|
||||
|
||||
|
||||
def dhw_system_sizing(self):
|
||||
storage_factor = 3
|
||||
dhw_hp = self._dhw_system.generation_systems[0]
|
||||
dhw_hp.nominal_heat_output = round(0.7 * self._domestic_hot_water_peak_load)
|
||||
dhw_hp.source_temperature = self._t_out
|
||||
dhw_tes = dhw_hp.energy_storage_systems[0]
|
||||
dhw_tes.volume = round(
|
||||
(self._domestic_hot_water_peak_load * storage_factor * cte.WATTS_HOUR_TO_JULES) /
|
||||
(cte.WATER_HEAT_CAPACITY * cte.WATER_DENSITY * 10))
|
||||
return dhw_hp, dhw_tes
|
||||
|
||||
def heating_system_simulation(self):
|
||||
hp, boiler, tes = self.heating_system_sizing()
|
||||
hp_efficiency = float(hp.heat_efficiency)
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_heating_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_tank", "t_ret", "m_ch", "m_dis", "q_hp", "q_boiler", "hp_cop",
|
||||
"hp_electricity", "boiler_gas_consumption", "t_sup_boiler", "boiler_energy_consumption",
|
||||
"heating_consumption"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, t_ret, m_ch, m_dis, q_hp, q_boiler, hp_cop,
|
||||
hp_electricity, boiler_gas_consumption, t_sup_boiler, boiler_energy_consumption, heating_consumption) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 55
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
boiler_heating_cap = boiler.nominal_heat_output
|
||||
hp_delta_t = 5
|
||||
boiler_efficiency = float(boiler.heat_efficiency)
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
# storage temperature prediction
|
||||
for i in range(len(demand) - 1):
|
||||
t_tank[i + 1] = (t_tank[i] +
|
||||
(m_ch[i] * (t_sup_boiler[i] - t_tank[i]) +
|
||||
(ua * (t_out[i] - t_tank[i])) / cte.WATER_HEAT_CAPACITY -
|
||||
m_dis[i] * (t_tank[i] - t_ret[i])) * (self.dt / (cte.WATER_DENSITY * v)))
|
||||
# hp operation
|
||||
if t_tank[i + 1] < 40:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] == 0:
|
||||
q_hp[i + 1] = 0
|
||||
m_ch[i + 1] = 0
|
||||
t_sup_hp[i + 1] = t_tank[i + 1]
|
||||
elif 40 <= t_tank[i + 1] < 55 and q_hp[i] > 0:
|
||||
q_hp[i + 1] = hp_heating_cap
|
||||
m_ch[i + 1] = q_hp[i + 1] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i + 1] = (q_hp[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY)) + t_tank[i + 1]
|
||||
else:
|
||||
q_hp[i + 1], m_ch[i + 1], t_sup_hp[i + 1] = 0, 0, t_tank[i + 1]
|
||||
t_tank_fahrenheit = 1.8 * t_tank[i + 1] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i + 1] + 32
|
||||
if q_hp[i + 1] > 0:
|
||||
hp_cop[i + 1] = (1 / (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_tank_fahrenheit +
|
||||
cop_curve_coefficients[2] * t_tank_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[3] * t_out_fahrenheit +
|
||||
cop_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank_fahrenheit * t_out_fahrenheit)) * hp_efficiency
|
||||
hp_electricity[i + 1] = q_hp[i + 1] / hp_cop[i + 1]
|
||||
else:
|
||||
hp_cop[i + 1] = 0
|
||||
hp_electricity[i + 1] = 0
|
||||
# boiler operation
|
||||
if q_hp[i + 1] > 0:
|
||||
if t_sup_hp[i + 1] < 45:
|
||||
q_boiler[i + 1] = boiler_heating_cap
|
||||
elif demand[i + 1] > 0.5 * self._heating_peak_load / self.dt:
|
||||
q_boiler[i + 1] = 0.5 * boiler_heating_cap
|
||||
boiler_energy_consumption[i + 1] = q_boiler[i + 1] / boiler_efficiency
|
||||
boiler_gas_consumption[i + 1] = (q_boiler[i + 1] * self.dt) / (boiler_efficiency * cte.NATURAL_GAS_LHV)
|
||||
t_sup_boiler[i + 1] = t_sup_hp[i + 1] + (q_boiler[i + 1] / (m_ch[i + 1] * cte.WATER_HEAT_CAPACITY))
|
||||
# storage discharging
|
||||
if demand[i + 1] == 0:
|
||||
m_dis[i + 1] = 0
|
||||
t_ret[i + 1] = t_tank[i + 1]
|
||||
else:
|
||||
if demand[i + 1] > 0.5 * self._heating_peak_load / cte.HOUR_TO_SECONDS:
|
||||
factor = 8
|
||||
else:
|
||||
factor = 4
|
||||
m_dis[i + 1] = self._heating_peak_load / (cte.WATER_HEAT_CAPACITY * factor * cte.HOUR_TO_SECONDS)
|
||||
t_ret[i + 1] = t_tank[i + 1] - demand[i + 1] / (m_dis[i + 1] * cte.WATER_HEAT_CAPACITY)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
boiler_consumption_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in boiler_energy_consumption]
|
||||
hp_hourly = []
|
||||
boiler_hourly = []
|
||||
boiler_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
boiler_sum += boiler_consumption_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
boiler_hourly.append(boiler_sum)
|
||||
hp_sum = 0
|
||||
boiler_sum = 0
|
||||
hp.energy_consumption[cte.HEATING] = {}
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
hp.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
boiler.energy_consumption[cte.HEATING] = {}
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR] = boiler_hourly
|
||||
boiler.energy_consumption[cte.HEATING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
boiler.energy_consumption[cte.HEATING][cte.HOUR])
|
||||
boiler.energy_consumption[cte.HEATING][cte.YEAR] = [
|
||||
sum(boiler.energy_consumption[cte.HEATING][cte.MONTH])]
|
||||
|
||||
self.results['Heating Demand (W)'] = demand
|
||||
self.results['HP Heat Output (W)'] = q_hp
|
||||
self.results['HP Source Temperature'] = t_out
|
||||
self.results['HP Supply Temperature'] = t_sup_hp
|
||||
self.results['HP COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['Boiler Heat Output (W)'] = q_boiler
|
||||
self.results['Boiler Supply Temperature'] = t_sup_boiler
|
||||
self.results['Boiler Gas Consumption'] = boiler_gas_consumption
|
||||
self.results['TES Temperature'] = t_tank
|
||||
self.results['TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['TES Discharge Flow Rate (kg/s)'] = m_dis
|
||||
self.results['Heating Loop Return Temperature'] = t_ret
|
||||
return hp_hourly, boiler_hourly
|
||||
|
||||
def cooling_system_simulation(self):
|
||||
hp = self.cooling_system_sizing()[0]
|
||||
eer_curve_coefficients = [float(coefficient) for coefficient in hp.cooling_efficiency_curve.coefficients]
|
||||
cooling_efficiency = float(hp.cooling_efficiency)
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_cooling_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
hp.source_temperature = self._t_out
|
||||
variable_names = ["t_sup_hp", "t_ret", "m", "q_hp", "hp_electricity", "hp_cop"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_ret, m, q_hp, hp_electricity, hp_cop) = [variables[name] for name in variable_names]
|
||||
t_ret[0] = 13
|
||||
|
||||
for i in range(1, len(demand)):
|
||||
if demand[i] > 0.15 * self._cooling_peak_load:
|
||||
m[i] = hp.nominal_cooling_output / (cte.WATER_HEAT_CAPACITY * 5)
|
||||
if t_ret[i - 1] >= 13:
|
||||
if demand[i] < 0.25 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.25 * hp.nominal_cooling_output
|
||||
elif demand[i] < 0.5 * self._cooling_peak_load:
|
||||
q_hp[i] = 0.5 * hp.nominal_cooling_output
|
||||
else:
|
||||
q_hp[i] = hp.nominal_cooling_output
|
||||
t_sup_hp[i] = t_ret[i - 1] - q_hp[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
if m[i] == 0:
|
||||
t_ret[i] = t_sup_hp[i]
|
||||
else:
|
||||
t_ret[i] = t_sup_hp[i] + demand[i] / (m[i] * cte.WATER_HEAT_CAPACITY)
|
||||
else:
|
||||
m[i] = 0
|
||||
q_hp[i] = 0
|
||||
t_sup_hp[i] = t_ret[i - 1]
|
||||
t_ret[i] = t_ret[i - 1]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (1 / (eer_curve_coefficients[0] +
|
||||
eer_curve_coefficients[1] * t_sup_hp_fahrenheit +
|
||||
eer_curve_coefficients[2] * t_sup_hp_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[3] * t_out_fahrenheit +
|
||||
eer_curve_coefficients[4] * t_out_fahrenheit ** 2 +
|
||||
eer_curve_coefficients[5] * t_sup_hp_fahrenheit * t_out_fahrenheit)) * cooling_efficiency / 3.41
|
||||
hp_electricity[i] = q_hp[i] / cooling_efficiency
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
hp_hourly = []
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
hp_hourly.append(hp_sum)
|
||||
hp_sum = 0
|
||||
hp.energy_consumption[cte.COOLING] = {}
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.COOLING][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.COOLING][cte.HOUR])
|
||||
hp.energy_consumption[cte.COOLING][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.COOLING][cte.MONTH])]
|
||||
self.results['Cooling Demand (W)'] = demand
|
||||
self.results['HP Cooling Output (W)'] = q_hp
|
||||
self.results['HP Cooling Supply Temperature'] = t_sup_hp
|
||||
self.results['HP Cooling COP'] = hp_cop
|
||||
self.results['HP Electricity Consumption'] = hp_electricity
|
||||
self.results['Cooling Loop Flow Rate (kg/s)'] = m
|
||||
self.results['Cooling Loop Return Temperature'] = t_ret
|
||||
return hp_hourly
|
||||
|
||||
def dhw_system_simulation(self):
|
||||
hp, tes = self.dhw_system_sizing()
|
||||
cop_curve_coefficients = [float(coefficient) for coefficient in hp.heat_efficiency_curve.coefficients]
|
||||
number_of_ts = int(cte.HOUR_TO_SECONDS / self.dt)
|
||||
demand = [0] + [x for x in self._hourly_dhw_demand for _ in range(number_of_ts)]
|
||||
t_out = [0] + [x for x in self._t_out for _ in range(number_of_ts)]
|
||||
variable_names = ["t_sup_hp", "t_tank", "m_ch", "m_dis", "q_hp", "q_coil", "hp_cop",
|
||||
"hp_electricity", "available hot water (m3)", "refill flow rate (kg/s)"]
|
||||
num_hours = len(demand)
|
||||
variables = {name: [0] * num_hours for name in variable_names}
|
||||
(t_sup_hp, t_tank, m_ch, m_dis, m_refill, q_hp, q_coil, hp_cop, hp_electricity, v_dhw) = \
|
||||
[variables[name] for name in variable_names]
|
||||
t_tank[0] = 70
|
||||
v_dhw[0] = tes.volume
|
||||
|
||||
hp_heating_cap = hp.nominal_heat_output
|
||||
hp_delta_t = 8
|
||||
v, h = float(tes.volume), float(tes.height)
|
||||
r_tot = sum(float(layer.thickness) / float(layer.material.conductivity) for layer in
|
||||
tes.layers)
|
||||
u_tot = 1 / r_tot
|
||||
d = math.sqrt((4 * v) / (math.pi * h))
|
||||
a_side = math.pi * d * h
|
||||
a_top = math.pi * d ** 2 / 4
|
||||
ua = u_tot * (2 * a_top + a_side)
|
||||
freshwater_temperature = 18
|
||||
for i in range(len(demand) - 1):
|
||||
delta_t_demand = demand[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if t_tank[i] < 62:
|
||||
q_hp[i] = hp_heating_cap
|
||||
delta_t_hp = q_hp[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
if demand[i] > 0:
|
||||
dhw_needed = (demand[i] * cte.HOUR_TO_SECONDS) / (cte.WATER_HEAT_CAPACITY * t_tank[i] * cte.WATER_DENSITY)
|
||||
m_dis[i] = dhw_needed * cte.WATER_DENSITY / cte.HOUR_TO_SECONDS
|
||||
m_refill[i] = m_dis[i]
|
||||
delta_t_freshwater = m_refill[i] * (t_tank[i] - freshwater_temperature) * (self.dt / (v * cte.WATER_DENSITY))
|
||||
if t_tank[i] < 60:
|
||||
q_coil[i] = float(tes.heating_coil_capacity)
|
||||
delta_t_coil = q_coil[i] * (self.dt / (cte.WATER_DENSITY * cte.WATER_HEAT_CAPACITY * v))
|
||||
|
||||
if q_hp[i] > 0:
|
||||
m_ch[i] = q_hp[i] / (cte.WATER_HEAT_CAPACITY * hp_delta_t)
|
||||
t_sup_hp[i] = (q_hp[i] / (m_ch[i] * cte.WATER_HEAT_CAPACITY)) + t_tank[i]
|
||||
else:
|
||||
m_ch[i] = 0
|
||||
t_sup_hp[i] = t_tank[i]
|
||||
t_sup_hp_fahrenheit = 1.8 * t_sup_hp[i] + 32
|
||||
t_out_fahrenheit = 1.8 * t_out[i] + 32
|
||||
if q_hp[i] > 0:
|
||||
hp_cop[i] = (cop_curve_coefficients[0] +
|
||||
cop_curve_coefficients[1] * t_out[i] +
|
||||
cop_curve_coefficients[2] * t_out[i] ** 2 +
|
||||
cop_curve_coefficients[3] * t_tank[i] +
|
||||
cop_curve_coefficients[4] * t_tank[i] ** 2 +
|
||||
cop_curve_coefficients[5] * t_tank[i] * t_out[i]) * float(hp.heat_efficiency)
|
||||
hp_electricity[i] = q_hp[i] / hp_cop[i]
|
||||
else:
|
||||
hp_cop[i] = 0
|
||||
hp_electricity[i] = 0
|
||||
|
||||
t_tank[i + 1] = t_tank[i] + (delta_t_hp - delta_t_freshwater - delta_t_demand + delta_t_coil)
|
||||
tes.temperature = []
|
||||
hp_electricity_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in hp_electricity]
|
||||
heating_coil_j = [(x * cte.WATTS_HOUR_TO_JULES) / number_of_ts for x in q_coil]
|
||||
hp_hourly = []
|
||||
coil_hourly = []
|
||||
coil_sum = 0
|
||||
hp_sum = 0
|
||||
for i in range(1, len(demand)):
|
||||
hp_sum += hp_electricity_j[i]
|
||||
coil_sum += heating_coil_j[i]
|
||||
if (i - 1) % number_of_ts == 0:
|
||||
tes.temperature.append(t_tank[i])
|
||||
hp_hourly.append(hp_sum)
|
||||
coil_hourly.append(coil_sum)
|
||||
hp_sum = 0
|
||||
coil_sum = 0
|
||||
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER] = {}
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR] = hp_hourly
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH] = MonthlyValues.get_total_month(
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.HOUR])
|
||||
hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.YEAR] = [
|
||||
sum(hp.energy_consumption[cte.DOMESTIC_HOT_WATER][cte.MONTH])]
|
||||
tes.heating_coil_energy_consumption = {}
|
||||
tes.heating_coil_energy_consumption[cte.HOUR] = coil_hourly
|
||||
tes.heating_coil_energy_consumption[cte.MONTH] = MonthlyValues.get_total_month(
|
||||
tes.heating_coil_energy_consumption[cte.HOUR])
|
||||
tes.heating_coil_energy_consumption[cte.YEAR] = [
|
||||
sum(tes.heating_coil_energy_consumption[cte.MONTH])]
|
||||
tes.temperature = t_tank
|
||||
|
||||
self.results['DHW Demand (W)'] = demand
|
||||
self.results['DHW HP Heat Output (W)'] = q_hp
|
||||
self.results['DHW HP Electricity Consumption (W)'] = hp_electricity
|
||||
self.results['DHW HP Source Temperature'] = t_out
|
||||
self.results['DHW HP Supply Temperature'] = t_sup_hp
|
||||
self.results['DHW HP COP'] = hp_cop
|
||||
self.results['DHW TES Heating Coil Heat Output (W)'] = q_coil
|
||||
self.results['DHW TES Temperature'] = t_tank
|
||||
self.results['DHW TES Charging Flow Rate (kg/s)'] = m_ch
|
||||
self.results['DHW Flow Rate (kg/s)'] = m_dis
|
||||
self.results['DHW TES Refill Flow Rate (kg/s)'] = m_refill
|
||||
self.results['Available Water in Tank (m3)'] = v_dhw
|
||||
return hp_hourly, coil_hourly
|
||||
|
||||
|
||||
|
||||
def enrich_buildings(self):
|
||||
hp_heating, boiler_consumption = self.heating_system_simulation()
|
||||
hp_cooling = self.cooling_system_simulation()
|
||||
hp_dhw, heating_coil = self.dhw_system_simulation()
|
||||
heating_consumption = [hp_heating[i] + boiler_consumption[i] for i in range(len(hp_heating))]
|
||||
dhw_consumption = [hp_dhw[i] + heating_coil[i] for i in range(len(hp_dhw))]
|
||||
self._building.heating_consumption[cte.HOUR] = heating_consumption
|
||||
self._building.heating_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.heating_consumption[cte.HOUR]))
|
||||
self._building.heating_consumption[cte.YEAR] = [sum(self._building.heating_consumption[cte.MONTH])]
|
||||
self._building.cooling_consumption[cte.HOUR] = hp_cooling
|
||||
self._building.cooling_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.cooling_consumption[cte.HOUR]))
|
||||
self._building.cooling_consumption[cte.YEAR] = [sum(self._building.cooling_consumption[cte.MONTH])]
|
||||
self._building.domestic_hot_water_consumption[cte.HOUR] = dhw_consumption
|
||||
self._building.domestic_hot_water_consumption[cte.MONTH] = (
|
||||
MonthlyValues.get_total_month(self._building.domestic_hot_water_consumption[cte.HOUR]))
|
||||
self._building.domestic_hot_water_consumption[cte.YEAR] = (
|
||||
sum(self._building.domestic_hot_water_consumption[cte.MONTH]))
|
||||
file_name = f'energy_system_simulation_results_{self._name}.csv'
|
||||
with open(self._output_path / file_name, 'w', newline='') as csvfile:
|
||||
output_file = csv.writer(csvfile)
|
||||
# Write header
|
||||
output_file.writerow(self.results.keys())
|
||||
# Write data
|
||||
output_file.writerows(zip(*self.results.values()))
|
|
@ -1,54 +0,0 @@
|
|||
from pathlib import Path
|
||||
import subprocess
|
||||
from scripts.ep_run_enrich import energy_plus_workflow
|
||||
from hub.imports.geometry_factory import GeometryFactory
|
||||
from hub.helpers.dictionaries import Dictionaries
|
||||
from hub.imports.construction_factory import ConstructionFactory
|
||||
from hub.imports.usage_factory import UsageFactory
|
||||
from hub.imports.weather_factory import WeatherFactory
|
||||
from hub.imports.results_factory import ResultFactory
|
||||
from scripts.energy_system_retrofit_report import EnergySystemRetrofitReport
|
||||
from scripts.geojson_creator import process_geojson
|
||||
from scripts import random_assignation
|
||||
from hub.imports.energy_systems_factory import EnergySystemsFactory
|
||||
from scripts.energy_system_sizing import SystemSizing
|
||||
from scripts.solar_angles import CitySolarAngles
|
||||
from scripts.pv_sizing_and_simulation import PVSizingSimulation
|
||||
from scripts.energy_system_retrofit_results import consumption_data, cost_data
|
||||
from scripts.energy_system_sizing_and_simulation_factory import EnergySystemsSimulationFactory
|
||||
from scripts.costs.cost import Cost
|
||||
from scripts.costs.constants import SKIN_RETROFIT_AND_SYSTEM_RETROFIT_AND_PV, SYSTEM_RETROFIT_AND_PV, CURRENT_STATUS
|
||||
import hub.helpers.constants as cte
|
||||
from hub.exports.exports_factory import ExportsFactory
|
||||
from scripts.pv_feasibility import pv_feasibility
|
||||
|
||||
# Specify the GeoJSON file path
|
||||
input_files_path = (Path(__file__).parent / 'input_files')
|
||||
input_files_path.mkdir(parents=True, exist_ok=True)
|
||||
geojson_file = process_geojson(x=-73.5681295982132, y=45.49218262677643, diff=0.0001)
|
||||
geojson_file_path = input_files_path / 'output_buildings.geojson'
|
||||
output_path = (Path(__file__).parent / 'out_files').resolve()
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
energy_plus_output_path = output_path / 'energy_plus_outputs'
|
||||
energy_plus_output_path.mkdir(parents=True, exist_ok=True)
|
||||
simulation_results_path = (Path(__file__).parent / 'out_files' / 'simulation_results').resolve()
|
||||
simulation_results_path.mkdir(parents=True, exist_ok=True)
|
||||
sra_output_path = output_path / 'sra_outputs'
|
||||
sra_output_path.mkdir(parents=True, exist_ok=True)
|
||||
cost_analysis_output_path = output_path / 'cost_analysis'
|
||||
cost_analysis_output_path.mkdir(parents=True, exist_ok=True)
|
||||
city = GeometryFactory(file_type='geojson',
|
||||
path=geojson_file_path,
|
||||
height_field='height',
|
||||
year_of_construction_field='year_of_construction',
|
||||
function_field='function',
|
||||
function_to_hub=Dictionaries().montreal_function_to_hub_function).city
|
||||
ConstructionFactory('nrcan', city).enrich()
|
||||
UsageFactory('nrcan', city).enrich()
|
||||
WeatherFactory('epw', city).enrich()
|
||||
energy_plus_workflow(city, energy_plus_output_path)
|
||||
random_assignation.call_random(city.buildings, random_assignation.residential_new_systems_percentage)
|
||||
EnergySystemsFactory('montreal_future', city).enrich()
|
||||
for building in city.buildings:
|
||||
EnergySystemsSimulationFactory('archetype1', building=building, output_path=simulation_results_path).enrich()
|
||||
|
|
@ -38,10 +38,10 @@ class TestSystemsCatalog(TestCase):
|
|||
catalog = EnergySystemsCatalogFactory('montreal_future').catalog
|
||||
|
||||
catalog_categories = catalog.names()
|
||||
archetypes = catalog.names()
|
||||
self.assertEqual(15, len(archetypes['archetypes']))
|
||||
archetypes = catalog.names('archetypes')
|
||||
self.assertEqual(13, len(archetypes['archetypes']))
|
||||
systems = catalog.names('systems')
|
||||
self.assertEqual(12, len(systems['systems']))
|
||||
self.assertEqual(10, len(systems['systems']))
|
||||
generation_equipments = catalog.names('generation_equipments')
|
||||
self.assertEqual(27, len(generation_equipments['generation_equipments']))
|
||||
with self.assertRaises(ValueError):
|
||||
|
|
Loading…
Reference in New Issue
Block a user